Abstract:
An electronic apparatus controlling method includes: determining if displacement of an object in a first predetermined time period is smaller than a first predetermined distance to generate a determining result; and controlling the electronic apparatus to perform a first predetermined action if the determining result is no, and controlling the electronic apparatus to perform a deciding step if the determining result is yes. The deciding step is utilized for deciding if a second predetermined action is performed according to a coordinates of the object at the end of the first predetermined time period.
Abstract:
A storage media provided by the present invention, has a non-transitory processing software for computing a position of an object in a distance measurement system, the execution of the processing software comprising: receiving a plurality of reference image information contained in an image with a speckle pattern, wherein the image is projected from a light beam on a plurality of reference flat surfaces which are located on different position points, and the speckle contains a plurality of speckles; receiving an object image information contained in an image with the speckle pattern which is projected from the light beam on an object; obtaining a plurality of comparison results through comparing the plurality of reference image information with the object image information; and computing the position of the object through performing an interpolation operation to the plurality of comparison results.
Abstract:
There is provided an auto detection system including a thermal detection device and a host. The host controls an indication device to indicate a prompt message or detection results according to a slope variation of voltage values or 2D distribution of temperature values detected by the thermal detection device, wherein the voltage values include the detected voltage of a single pixel or the sum of detected voltages of multiple pixels of a thermal sensor.
Abstract:
An object position determining system comprising: at least one light source, configured to emit light; at least one optical sensor, configured to sense optical data generated based on reflected light of the light; and a processing circuit, configured to compute distance information between the optical sensor and an object which generates the reflected light. The processing circuit further determines a position of the object according to the distance information.
Abstract:
There is provided an image sensor employing an avalanche diode. The image sensor includes a plurality of pixel circuits arranged in a matrix, a plurality of pulling circuits, a plurality of output circuits and a global current source circuit. Each of the plurality of pixel circuits includes a single photon avalanche diode and a P-type or N-type select switch transistor. Each of the plurality of pulling circuits is arranged corresponding to one pixel circuit column. The global current source circuit is used to form a current mirror with each of the plurality of pulling circuits. Each of the plurality of output circuits is shared by at least two pixel circuits.
Abstract:
A smart wearable device has a signal calibration function executed by a signal calibration method and applied to a finger, a limb and/or a neck of a user. The smart wearable device includes at least one physiological signal detector, at least one pressure detector and an operation processor. The at least one physiological signal detector is adapted to abut against a detection area of the user for detecting a physiological signal. The at least one pressure detector is disposed around the at least one physiological signal detector and adapted to detect a pressure value of the detection area. The operation processor is electrically connected with the at least one physiological signal detector and the at least one pressure detector. The operation processor is adapted to optimize the physiological signal when the pressure value exceeds a predefined pressure threshold.
Abstract:
There is provided an image sensor employing an avalanche diode. The image sensor includes a plurality of pixel circuits arranged in a matrix, a plurality of pulling circuits, a plurality of output circuits and a global current source circuit. Each of the plurality of pixel circuits includes a single photon avalanche diode and a P-type or N-type select switch transistor. Each of the plurality of pulling circuits is arranged corresponding to one pixel circuit column. The global current source circuit is used to form a current mirror with each of the plurality of pulling circuits. Each of the plurality of output circuits is shared by at least two pixel circuits.
Abstract:
A far infrared sensor package includes a package body and a plurality of far infrared sensor array integrated circuits. The plurality of far infrared sensor array integrated circuits are disposed on a same plane and inside the package body. Each of the far infrared sensor array integrated circuits includes a far infrared sensing element array of a same size.
Abstract:
The present invention provides a motion detecting system, which includes a light source module, a plurality of image sensors and a control unit. The light source module illuminates at least one object. The image sensors respectively detect the object under the light emitted by the light source module to generate a plurality of detection results. The control unit is coupled to the image sensors, and generates a control command according to the detection results.
Abstract:
A far infrared sensor package includes a package body and a plurality of far infrared sensor array integrated circuits. The plurality of far infrared sensor array integrated circuits are disposed on a same plane and inside the package body. Each of the far infrared sensor array integrated circuits includes a far infrared sensing element array of a same size.