Abstract:
A multiple target tracker and beam steerer utilizes liquid crystal waveguide (LCWG) beam steering to illuminate multiple tracked targets per frame one target at a time for designation, range finding or active imaging. The steering rate and range afforded by the LCWG supports various tracker configurations (out-of-band, in-band or dual-band video cameras), LADAR detectors (single pixel or pixelated) and prioritization of tracked targets to vary the revisit rate or dwell time for an illuminated target. A user interface accepts commands from an operator to select the targeting mode, control cue-box size and position within the FOV and target selection.
Abstract:
Optical non-uniformity correction (NUC) of an active mode image sensor scans a spot over a portion of the sensor's FOV within a frame time so that the net response of the sensor is approximately uniform. Scanning the laser spot simultaneously performs the NUC and provides the illumination of the FOV for imaging the scene. The laser spot is suitably scanned in an overlapping geometrical pattern relative to a line-of-sight of the sensor's imager while modulating a spacing between overlapping laser spots, the size of the spot, a dwell time of the laser spot or the energy of the laser spot or combinations thereof as a function of the scan position of the laser spot so that the laser illumination is inversely proportional to the imager response at the scan position of the laser spot. A liquid crystal waveguide may be used to form and scan the small laser spot over the FOV within the frame time.
Abstract:
A beam steering architecture for an optical sensor is based upon a pair of Micro-Electro-Mechanical System (MEMS) Micro-Mirror Arrays (MMAs) and a fold mirror. The MEMS MMAs scan both primary and secondary FOR providing considerable flexibility to scan a scene to provide not only active imaging (to supplement passive imaging) but also simultaneously allowing for other optical functions such as establishing a communications link, providing an optical transmit beam for another detection platform or determining a range to target. A special class of MEMS MMAs that provides a “piston” capability in which the individual mirrors may translate enables a suite of optical functions to “shape” the optical transmit beam.
Abstract:
An RF imaging receiver using photonic spatial beam processing is provided with an optical beam steerer that directs the modulated optical signals to steer the composite optical signal and move the location of the spot on the optical detector array. The optical beam steerer may be implemented with one or more phase-dependent steering units in which each unit includes a waveplate and polarization grating to steer the modulated optical signals. The optical beam steerer may be configured to act on the individual modulated optical signals to induce individual phase delays that produce a phase delay with a linear term, and possibly spherical or aspherical terms, to steer the composite optical signal in which case the optical beam steerer may be implemented, for example, with an optical phase modulator and optical antenna in each optical channel which together form an OPA, a Risley prism or a liquid crystal or MEMs spatial light modulator.
Abstract:
An active mode image sensor for optical non-uniformity correction (NUC) of an active mode sensor uses a Micro-Electro-Mechanical System (MEMS) Micro-Mirror Array (MMA) having tilt, tip and piston mirror actuation to form and scan a laser spot that simultaneously performs the NUC and illuminates the scene so that the laser illumination is inversely proportional to the response of the imager at the scan position. The MEMS MMA also supports forming and scanning multiple laser spots to simultaneously interrogate the scene at the same or different wavelengths. The piston function can also be used to provide wavefront correction. The MEMS MMA may be configured to generate a plurality of fixed laser spots to perform an instantaneous NUC.
Abstract:
An RF imaging receiver using photonic spatial beam processing is provided with an optical beam steerer that directs the modulated optical signals to steer the composite optical signal and move the location of the spot on the optical detector array. The optical beam steerer may be implemented with one or more phase-dependent steering units in which each unit includes a waveplate and polarization grating to steer the modulated optical signals. The optical beam steerer may be configured to act on the individual modulated optical signals to induce individual phase delays that produce a phase delay with a linear term, and possibly spherical or aspherical terms, to steer the composite optical signal in which case the optical beam steerer may be implemented, for example, with an optical phase modulator and optical antenna in each optical channel which together form an OPA, a Risley prism or a liquid crystal or MEMs spatial light modulator.
Abstract:
An optical sensor uses a MEMS MMA to scan a narrow laser beam over a transmit FOR to provide active illumination and to correct the beam profile (e.g., collimate the beam, reduce chromatic aberrations, correct the beam profile or wavefront). A staring detector senses light within a receive FOR that at least partially overlaps the transmit FOR. By completely eliminating the dual-axis gimbal, this sensor architecture greatly reduces the volume and weight of the optical sensor while avoiding the deficiencies of known systems associated with either fiber or free-space coupling of the laser beam into an existing receiver.
Abstract:
Thermal control of powered systems on-board a flight vehicle is achieved by leveraging the latent heat storage capacity of Phase Change Materials (PCMs) to maintain the operating temperature at or slightly above the melting temperature of the PCM. The invention is particularly well suited for use with powered systems such as laser, microwave emitters, RF sensors and high-density power electronics that must operate at a desired operating temperature while generating considerable waste heat in a confined packaging volume of smaller flight vehicles such as missiles, rockets, guided projectiles, drones or other such platforms.
Abstract:
A sensing system. In some embodiments, the system includes a first imaging radio frequency receiver, a second imaging radio frequency receiver, a first optical beam combiner, a first imaging optical receiver, a second optical beam combiner, and an optical detector array. The first optical beam combiner may be configured to combine optical signals of the imaging radio frequency receivers. The second optical beam combiner may be configured to combine the optical signals of the imaging radio frequency receivers, and the optical signal of the first imaging optical receiver.
Abstract:
A tip/tilt/piston (“TTP”) MEMS MMA is used to provide coherent beam combination (CBC) such that the combined beam behaves as if it were emitted from a single aperture laser, but with higher brightness than can be obtained from an individual laser. Piston actuation of the mirrors is used to adjust the phase of individual amplified laser beams and maintain a zero phase difference across all of the amplified laser beams. Tip/Tilt actuation of the mirrors is used to steer the phase-adjusted amplified laser beams to form a coherent output laser beam. Additional TTP actuation can be used to oversample and superimpose Adaptive Optics correction or focusing/defocusing on the beam. A multi-spectral system may be implemented with a common MEMS MMA to produce a spectrally beam combined, multi-channel coherent laser beam.