Abstract:
The invention provides an ink jet device for producing a biological assay substrate. The device releases a plurality of substances onto the substrate from print heads, provided with the substances. The device further comprises means to subject the printed substrates to an accelerated motion. The accelerated motion which acts about perpendicular to the surface of the substrates acts to control penetration of the substances into the substrate. The invention also relates to a method for producing a biological assay substrate, and to a biological assay substrate obtainable by such method.
Abstract:
The present invention relates to a system for copy protection of an information carrier, said system comprising a diffractive layer for delivering a speckle pattern when illuminated by a light source, a spatial filter, which is aligned with respect to the diffractive layer, for delivering a filtered optical signal from the speckle pattern and a detector array for delivering, when illuminated by said filtered optical signal, an electrical signal. Said system further comprises means for computing a cryptographic key from the electrical signal, and means for decrypting encrypted data contained in the information carrier from the cryptographic key. It finds its application in copy protection of content carriers such as optical discs or in smart cards.
Abstract:
The invention relates to a device for use in separation, especially isoelectric focusing employing “pH sink regions”, whereby the direction of change in pH is reversed.
Abstract:
A light-emitting diode (1) has a first electrode (3), a second electrode (4) and a light-emitting layer (5). A layer (6) of an ion receptor (CR) is positioned between the first electrode (3) and the light-emitting layer (5). Immobile ions of a second charge are positioned between the second electrode (4) and the first electrode (3). The immobile ions initially had counterions of a first charge. The layer (6) has captured the counterions, thereby forming a concentration of immobilized ions at the first electrode (3). The ion gradient provide for injection of electrons (e) and holes (h) resulting in emission of light (L). A diode (1) is manufactured by exposing a laminate (2) of the above structure to a forward bias making the ion receptor (CR) capture the counterions.
Abstract:
The invention relates to a separation medium for chromatography which is structured in that way that the flow rate is in one preselected direction larger than perpendicular to that direction.
Abstract:
The application provides a device (10) for the controlled release of a predefined quantity of a substance and a method for controllably releasing a predefined quantity of a substance from a compartment. The device comprises a matrix arrangement of compartments (20) in a substrate, each compartment being closed by at least one release mechanism, at least one first electrode (40) and at least one second electrode (50) being assigned to each compartment, the device comprising a plurality of row selection lines (60) and a plurality of column selection lines (70) and a plurality of column selection lines, the number of compartments exceeding the sum of the number of row selection lines and the number of column selection lines, each first electrode being electrically connected directly to one of the plurality of row selection lines and each second electrode being electrically connected directly to one of the plurality of column selection lines.
Abstract:
The application provides a device (10) for the controlled release of a predefined quantity of a substance from a compartment (20). The device comprises a matrix arrangement of compartments in a substrate, each compartment being closed by at least one release mechanism, at least one first electrode (40) and at least one second electrode (50) being assigned to each compartment, the device comprising a plurality of selection lines (60) and a plurality of signal lines (70), the number of compartments exceeding the sum of the number of selection lines and the number of signal lines, each first electrode or each second electrode being electrically connected via at least one active component to one of the plurality of selection lines and/or to one of the plurality of signal lines.
Abstract:
This invention relates to a device (100) to be worn by or attached to an animal (102) for indicating the physiological status of the animal. At least one measuring device is used for measuring the physiological state of said animal. The resulting physiological data are regularly compared to at least one threshold value when evaluating the current physiological status of said animal. Based thereon, indication means indicates the current physiological status of said animal.
Abstract:
An active matrix display (1) comprises a pixel (P) including sub-pixels (10), and a drive circuit (6) which receives an input signal (IV) determining a desired luminance (BR) and a desired color (AC) of the pixel (P). The drive circuit (6) comprises a level detector (3) which determines whether the desired luminance (BR) is below a predetermined level (VT), and a controller (4) for, when the desired luminance (BR) is below the predetermined level (VT), (i) changing a number of the sub-pixels (10) contributing to the desired luminance (BR) into a lower number than optimally required to obtain the desired color (AC), and (ii) increasing a level of at least one of said contributing sub-pixels (10) to obtain a higher luminance of this one of said contributing sub-pixels (10) than if all the sub-pixels (10) required to obtain the desired color (AC) would contribute to the desired luminance (BR):
Abstract:
The invention relates to an information carrier comprising:—a mask layer (ML) defining a data pattern,—a detection layer (DL) stacked on said mask layer (ML) and comprising at least one segment made of organic photosensitive material embedded between electrodes for detecting said data pattern. Use: Optical storage