Abstract:
A ground plane of a printed circuit board (PCB) includes a number of tiles, wherein the tiles are so regularly arranged that no matter in which way a straight signal line segment is arranged on a signal plane of the PCB, a return current path on the tiles corresponding to the signal line segment is not in a straight line, thereby reducing the difference in impedance of return current paths.
Abstract:
An electrical contact (30) for use with an elongated slanted SIMM socket, includes a base (32), a pair of retention arms (34, 35) respectively positioned at two opposite ends thereof, and a tail (36) extending therefrom for solderably connecting to a PC board on which the socket (80) is mounted. A pair of cantilever type contact beams (36, 38) generally extending from one corner (42) formed by one of the retention arms (34, 35) and the base (32), are composed of a high beam (36) and a low beam (38) wherein a contact apex (46) of the high beam (36) engages the corresponding pad (104) on the upper surface (106) of the module (100), and a contact apex (54) of the low beam (36) engages the corresponding pad (108) on the undersurface (109) of the module (100). The high beam (36) includes at least two segments (40, 44) whereby a substantial component of a displacement of the contact apex (46) of the high beam (36) along the upper surface (106) of the module (100) is arranged in a direction from the lower edge to the upper edge of the module (100).
Abstract:
A printed circuit board layout method includes the following steps. A printed circuit board with a signal layer, and a pair of differential transmission lines positioned on the signal layer is provided. A first distance is determined, when the distance between the pair of differential transmission lines is greater or less than the first distance, an eye width and an eye height of an eye diagram obtained at output terminals of the pair of differential transmission lines increases. A second distance less than the first distance is set between the pair of differential transmission lines which makes the eye width and the eye height meet requirement of the differential transmission lines for the eye diagram.
Abstract:
The invention related to a method and circuit that is used to compensate for S-parameters of a passive circuit which do not satisfy passivity. The method includes the following steps: (1) getting S-parameters which do not satisfy passivity, these S-parameters being composed of an S-parameter matrix S; (2) computing matrix [S×S′], wherein matrix S′ is a complex conjugate transposed matrix of the S-parameter matrix S; (3) computing the eigenvalues of the matrix [S×S′], and choosing an eigenvalue Ψ whose real part real(Ψ) is the biggest; (4) computing a compensating value ξ, the compensating value ξ being equal to real(Ψ)1/2×(1+ε), wherein the ε is a very small positive number; and (5) dividing each of the S-parameters by the compensating value ξ to get the compensated S-parameters.
Abstract:
A computer enclosure includes a chassis with a plurality of heat generating components installed therein and an airflow guide structure. The airflow guide structure includes a fan and a duct attached to the fan. A pair of airflow outlets aligned with the fan is defined in the duct. The duct includes a plurality of pivot panels pivotally attached at airflow outlets. The pivot panels are configured to guide airflow from the fan to different positions of heat generating components in the chassis.
Abstract:
An electronic apparatus includes an enclosure (30), a circuit board (40), a fan module (20), and an air guiding element (10) mounted in the enclosure. The circuit board includes at least one heat generating component (41) thereon. The fan module has a fan (22) and an output opening (213) corresponding to the fan. The air guiding element comprises a resisting panel (11) and a guiding panel (12) comprises a free end that extends toward the output opening of the fan module. The at least one heat generating component and the output opening are on the same side of the resisting panel. The guiding panel defines a free end (127) and a connecting end (125) connecting the resisting panel. A plane defined by the ends of the guiding panel is aligned at an angle larger than 90 degrees relative to the resisting panel.
Abstract:
A mounting apparatus for mounting a heat sink on a board, includes a first locking hole defined in the heat sink, a second locking hole defined in the board, and a locking member. The locking member includes a base and a rod. The base defines a hole. A bottom of the base forms a pair of separated elastic claws around the hole. The elastic claws are inserted through the first and second locking holes. The rod includes an expanded portion. The rod slides in the hole of the base with the expanded portion located inbetween the claws to expand the claws outwards to be larger than the second locking hole to lock the locking member on the board and to mount the heat sink on the board.
Abstract:
A circuit board is provided for improving signal quality, including a signal plane for a plurality of signal traces arranged thereon and a ground plane formed by a plurality of tiles connected to each other in an array. Each tile is formed by ground traces. Different line segments of a signal trace mapped on the ground plane cross ground traces of the tiles at similar angles, thereby minimizing interaction between the ground traces and the signal traces to reduce differences in impedances of the signal traces.
Abstract:
The present invention provides a system for computing the frequency of a low frequency wave. The system includes: a wave producer (3) configured for sending out a first wave with a high frequency; a device (4) configured for sending out a second wave with a low frequency to be computed, the first wave and the second wave interfering with each other thereby producing a third wave; a sensor (2) configured for receiving the third wave; and a computer (1) installed with wave analyzing software and linked with the sensor, and configured for receiving and analyzing the third wave to compute the frequency of the second wave.
Abstract:
A signal transmission structure includes a driving circuit block, a receiving circuit block, a main transmission line, and a copper patch. The main transmission line connects the driving circuit block to the receiving circuit block for transmitting signals therebetween. The copper patch is arranged at the main transmission line, and has a rectangular shape. The copper patch can reduce switching rates when the signal state of the driving circuit changes rapidly. The copper patch serves as a compensation capacitor, to reduce a rate of switching of the signal, and to reduce or even eliminate the problems of crosstalk and overshooting and undershooting of signals. It is of advantage that the copper patch is simple to manufacture and very suitable for mass production.