Abstract:
A valve timing controller includes: a driving-side rolling body configured to rotate synchronously with an engine crankshaft; a driven-side rolling body configured to rotate in a unified manner with a camshaft for opening/closing an engine valve relative to the driving-side rolling body; an advance chamber, and a retard chamber; a torsion spring disposed in a space formed between a front plate or a rear plate of the driving-side rolling body and the driven-side rolling body and configured to bias at all times the driving-side rolling body and the driven-side rolling body in the advance direction or the retard direction; and a first cylindrical portion provided in the front plate or the rear plate and a second cylindrical portion provided in the driven-side rolling body, the first and second cylindrical portions being insertable into each other in an axial direction.
Abstract:
A valve timing control device that enables simplification of the manufacturing process and reduction of the number of parts while suppressing deformation of a driven rotary element. The valve timing control device includes a driving rotary element, a driven rotary element, a plurality of partitions each for dividing a fluid pressure chamber into a regarded angle chamber and an advanced angle chamber, and a connecting element for connecting the driven rotary element to a camshaft. The connecting element includes a press fitting portion having a plurality of fitting segments configured to fit to an inner circumference of a recess of the driven rotary element. At least one of centerlines of the fitting segments extending in a radial direction does not overlap any of the partitions.
Abstract:
A valve opening/closing timing control device, including: a drive-side rotating body rotating synchronously with crankshaft; a driven-side rotating body arranged coaxially with the drive-side rotating body and rotating synchronously with a camshaft in an internal combustion engine; a partition section provided to at least one of the drive-side rotating body and the driven-side rotating body so as to partition a fluid pressure chamber into a retard chamber and an advance chamber; a seal member preventing leakage of a working fluid between the retard chamber and the advance chamber; and a biasing member engaging with the seal member by a biasing force caused by elastic deformation and biasing the seal member from the partition section side towards the drive-side rotating body side or the driven-side rotating body side.
Abstract:
A valve timing controller includes: a driving-side rolling body configured to rotate synchronously with an engine crankshaft; a driven-side rolling body configured to rotate in a unified manner with a camshaft for opening/closing an engine valve relative to the driving-side rolling body; an advance chamber, and a retard chamber; a torsion spring disposed in a space formed between a front plate or a rear plate of the driving-side rolling body and the driven-side rolling body and configured to bias at all times the driving-side rolling body and the driven-side rolling body in the advance direction or the retard direction; and a first cylindrical portion provided in the front plate or the rear plate and a second cylindrical portion provided in the driven-side rolling body, the first and second cylindrical portions being insertable into each other in an axial direction.
Abstract:
A valve timing control device includes a driving rotary element synchronously rotatable with a crankshaft; a driven rotary element mounted coaxially with the driving rotary element and synchronously rotatable with a camshaft; a plurality of partitions provided in the driven rotary element each for dividing a fluid pressure chamber formed between the driving rotary element and the driven rotary element into a regarded angle chamber and an advanced angle chamber; and a connecting element for connecting the driven rotary element to the camshaft. The connecting element includes a flange inserted into a recess formed in the driven rotatory element, and a shaft portion inserted into a through bore formed in a wall of the driving rotary element adjacent to the camshaft. The flange has an outer diameter larger than that of the shaft portion, and is disposed between the driven rotary element and the wall.
Abstract:
Provided is a valve timing control apparatus that allows relaxation of manufacturing precision of a driving-side rotary member and a driven-side rotary member and that achieves space saving at the same time. An urging member includes at least one trough-folded portion and at least one crest-folded portion, one end side contact portion formed between one terminal end of the urging member and the trough-folded portion and coming into contact with a sealing element, and other end side contact portion formed between the other terminal end of the urging member and the crest-folded portion and coming into contact with a partitioning portion. In association with urging of the urging member, the distance between the one end side contact portion and the other end side contact portion along the urging direction is decreased and the angles of the trough-folded portion and the crest-folded portion are decreased.
Abstract:
A water repellent anti-reflective structure with a superior water repellent function and an anti-reflective function, a method of manufacturing the same, and components of vehicles comprising the water repellent anti-reflective structure (e.g., display or window panel) are taught. Numerous cone-shaped projections having a circular or polygonal bottom surface and a diameter of a circular bottom surface or a circle circumscribing with a polygonal bottom surface within a range between 50 and 380 nm are configured to be arranged at a pitch within a range between 50 and 380 nm, having an aspect ratio within a range greater than or equal to 1.5 and made from material having a contact angle with water equal to or greater than 90°.
Abstract:
A valve timing control apparatus includes a drive-side rotation member synchronously rotating with a crankshaft of an internal combustion engine, a driven-side rotation member integrally rotating with a camshaft, a rotational phase adjusting device including a retarded angle chamber and an advanced angle chamber, the rotational phase adjusting device adjusting the relative rotational phase between the drive-side rotation member and the driven-side rotation member, and a boss member provided at a portion of the driven-side rotation member facing an outer wall surface of the internal combustion engine and including a thrust surface that extends to be perpendicular to a rotational axis of the camshaft and that is exposed to the outer wall surface of the internal combustion engine. The boss member causes the drive-side rotation member to be prevented from making contact with the outer wall surface by making contact with the outer wall surface of the internal combustion engine.
Abstract:
An antireflective structure includes: a flat layer having a surface; a fine structure layer including: fine protrusions each including: a head end part, and a base face which is at least one of: a circular base face of a truncated cone, the circular base face having diameter of circle, and a polygonal base face of a truncated pyramid, the polygonal base face having diameter of circumscribing circle of polygonal base face, the fine protrusions being arranged on the surface of the flat layer to define a pitch, wherein, with first reflective face formed in head end part of each of the fine protrusions, and second reflective face formed between fine protrusions on the surface of flat layer: each of the diameter of the circle and the diameter of the circumscribing circle is smaller than wavelength of incident electromagnetic wave, and the pitch is smaller than wavelength of incident electromagnetic wave.
Abstract:
[Object] To provide piezoelectric/electrostrictive ceramics and a piezoelectric/electrostrictive element with a large electric field-induced strain without performing an aging treatment.[Solving Means] Piezoelectric/electrostrictive ceramics have the composition represented by the general formula: xBNT-yBKT-zBT (x+y+z=1) wherein at least one kind among A-site elements are allowed to become deficient from stoichiometry in which a point (x, y, z) representing content ratios x, y and z of (Bi1/2Na1/2)TiO3, (Bi1/2K1/2)TiO3 and BaTiO3 is within a range (also including a border line) of a quadrangle ABCD with a point A, a point B, a point C and a point D as vertices in a ternary phase diagram. Vacancies are formed in an A-site of a perovskite structure by allowing the A-site elements to become deficient from stoichiometry. An amount of A-site vacancies becomes at least 2 mol % to at most 6 mol %.