Abstract:
The present invention relates to a discharge lamp with a floor plate and a roof plate, which is designed for dielectrically impeded discharge, with at least two electrodes of different polarity being allocated to the sections of the discharge space, which is divided by rib-like support elements, with the electrodes located at a distance from the longitudinal support elements.
Abstract:
Proposed is a circuit for driving a fluorescent lamp and a light-emitting diode. The circuit may include an inverter; a fluorescent lamp driving branch for driving a fluorescent lamp; a light-emitting diode driving branch for driving a light-emitting diode; a starting branch; and an alternate control branch. By using a simple circuit structure, various embodiments may realize a circuit capable of conveniently and alternately driving a fluorescent lamp and a light-emitting diode.
Abstract:
The invention relates to a discharge lamp with a floor plate and a roof plate designed for dielectrically impeded discharge, in which the minimum discharge distances are at least 10 mm.
Abstract:
A mounting structure for solid-state light sources, for example of the LED type, comprises a support board; a submount mounted on said support board and having at least one solid-state light radiation source mounted thereon; a drive board carrying drive circuitry for the light radiation source, the aforementioned drive board being mounted on the support board and extending peripherally with respect to the aforementioned submount; electrical interface connections between the submount and the drive board for connecting the light radiation source to the drive circuitry; and mechanical and thermal interface connections between the submount and the support board.
Abstract:
A lighting device may include a printed circuit board, wherein the printed circuit board has wiring on at least one of the front side and the back side thereof, the respective wiring is covered by at least one potting layer, the lighting device furthermore has at least one electrically conductive punched bushing and the punched bushing extends through a potting layer at least to the wiring and contacts the wiring.
Abstract:
A discharge lamp may include a substantially ellipsoidal discharge vessel that surrounds an anode and a cathode that are respectively fixed by current-carrying electrode holders, the latter being guided through bulb shafts arranged diametrically on the discharge vessel, there being provided around the electrode holders at the transition from the discharge vessel to the bulb shafts constrictions that form a connecting channel between the discharge space, surrounded by the discharge vessel, and in each case the bulb shaft spaces surrounded by the bulb shafts, wherein at least one of the discharge vessel, the constrictions and the anode coating is designed in such a way as to reduce or avoid blackening of the discharge vessel in the light-emitting region.
Abstract:
A printed circuit board is provided with at least one via hole, in which a heat dissipating element is arranged, wherein at least one radiant source is arranged on the heat dissipating element. The lighting device is provided with at least one such printed circuit board.
Abstract:
A method for the closed-loop control of the operation of a light source which is supplied with power by a DC/DC voltage converter, a manipulated variable being regulated by a setpoint value for an operational parameter of the DC/DC voltage converter being input, wherein the method comprises the steps of: increasing the switching frequency of the DC/DC voltage converter by an increase value prior to rapid changes in the setpoint value; waiting for a retention time; setting the new setpoint value; waiting for the end of a total retention time; and lowering the switching frequency of the DC/DC voltage converter by the increase value.
Abstract:
Various embodiments provide a lateral reflector, wherein the lateral reflector has a bottom opening, a light source arranged on a base plate can be accommodated in the bottom opening; a reflecting surface is arranged on two opposite sides of the light source in the lateral reflector, and the reflecting surface is configured to reflect a light emitted from the light source and arriving at the reflecting surface, so that the light arriving at the reflecting surface is deflected toward a direction that is parallel to the opposite sides. Various embodiments further provide an array of such lateral reflectors. Further, various embodiments disclose a lamp unit and a lamp containing such lateral reflector, and puts forward a method for producing such lateral reflector.
Abstract:
A low-pressure discharge lamp includes a discharge vessel, a gas discharge medium including nitrogen contained in the discharge vessel at low pressure, wherein the discharge lamp is configured such that light may be generated by a high-current discharge process of the gas discharge medium.