Abstract:
A cleaning robot including a main body, a pad mounted below the main body to implement cleaning, and a drive assembly to apply drive power to the pad. The drive assembly moves the main body to a target position by adjusting the drive power. The cleaning robot may move at a high speed owing to omni-directional movement thereof without rotation of the main body. Further, the cleaning robot may imitate a human wiping pattern, thus achieving enhanced cleaning efficiency. Furthermore, various cleaning patterns including a straight pattern and a curvilinear pattern may be applied to the cleaning robot.
Abstract:
Provided is a wirelessly charged robot cleaning system and a method for wirelessly charging a robot cleaner. The wirelessly charged robot may include a target resonator to receive a resonance power through energy-coupling with a source resonator of a wireless power transmitter, a wireless power receiving unit to convert the received resonance power into a rated voltage, and a battery controller to check the remaining capacity of the battery based and to charge the battery.
Abstract:
A robot cleaner including a driving unit configured to move the robot cleaner; a charging unit disposed on an upper surface of the robot cleaner, and configured to wirelessly charge a mobile terminal; and a control unit configured to control the driving unit to move the robot cleaner to a position of the mobile terminal corresponding to a sensed preset signal, control the robot cleaner to execute a wireless charging of the mobile terminal placed on the charging unit according to a charging command, and output a feedback signal when the wireless charging of the mobile terminal is completed.
Abstract:
A cleaning robot including a main body, a pad mounted below the main body to implement cleaning, and a drive assembly to apply drive power to the pad. The drive assembly moves the main body to a target position by adjusting the drive power. The cleaning robot may move at a high speed owing to omni-directional movement thereof without rotation of the main body. Further, the cleaning robot may imitate a human wiping pattern, thus achieving enhanced cleaning efficiency. Furthermore, various cleaning patterns including a straight pattern and a curvilinear pattern may be applied to the cleaning robot.
Abstract:
A method for energy management in a robotic device includes providing a base station for mating with the robotic device, determining a quantity of energy stored in an energy storage unit of the robotic device, and performing a predetermined task based at least in part on the quantity of energy stored. Also disclosed are systems for emitting avoidance signals to prevent inadvertent contact between the robot and the base station, and systems for emitting homing signals to allow the robotic device to accurately dock with the base station.
Abstract:
A cleaning robot includes a non-circular main body, a moving assembly mounted on a bottom surface of the main body to perform forward movement, backward movement and rotation of the main body, a cleaning tool assembly mounted on the bottom surface of the main body to clean a floor, a detector to detect an obstacle around the main body, and a controller to determine whether an obstacle is present in a forward direction of the main body based on a detection signal of the detector, control the rotation of the main body to determine whether the main body rotates by a predetermined angle or more upon determining that the obstacle is present in the forward direction, and determine that the main body is in a stuck state to control the backward movement of the main body if the main body rotates by the predetermined angle or less.
Abstract:
The self-propelled cleaner (1) of the present invention includes an event detecting section (101) for detecting an event which relates to cleaning and has occurred in the cleaner, a feeling selecting section (201) for selecting, from a plurality of options, an operation mode with which the cleaner carries out an operation in response to the event, in accordance with measured information which relates to the cleaning and is measured by the cleaner, and a response operation control section (301) for controlling the cleaner to carry out the operation based on the operation information which is associated with the event and the operation mode.
Abstract:
A charging device of a robot cleaner is provided. The charging device of a robot cleaner according to the embodiment includes at least one cover forming an appearance of the charging device, a base which is coupled with the cover and includes a terminal unit for charging the robot cleaner, an induction signal generating unit disposed at a side of the cover or the base to transmit a return induction signal to the robot cleaner, and an induction signal guide member disposed at a side of the induction signal generating unit to enhance a docking performance of the robot cleaner by improving linearity of the induction signal. The charging device according to the embodiment can guide the path for the return of the robot cleaner and recharge the robot cleaner stably.
Abstract:
A robotic surface treatment device includes at least two wheels, at least two electric motors, wherein one electric motor is connected to one corresponding wheel via a motor shaft, at least two treatment pads, wherein at least one treatment pad is attached to a bottom surface of a corresponding wheel, a main controller positioned on top of and in connection with drive controllers positioned on top of each electric motor, a plurality of sensors integrated in the main controller, and a rechargeable battery connected to the main controller. At least one treatment fluid tank may be positioned on the robotic surface treatment device, and at least one treatment fluid tube may extend from a bottom surface of the treatment fluid tank to a bottom surface of the robotic surface treatment device. The sensors may be laser or acoustic sensors configured to create a boundary line for a treatment area.
Abstract:
A guiding device for guiding a mobile robotic vacuum cleaner to a charging base is composed of a central sensor, a left sensor, and a right sensor. The mobile robotic vacuum cleaner is composed of a main processor and a driving system. The charging base includes an optical emitter for emitting optical signals toward a predetermined direction. The central sensor, the right sensor, and the left sensor are electrically connected with the main processor and mounted to a charging sensor set zone. In this way, the main processor can judge whether the mobile robotic device correctly moves toward the charging base according to the signals detected by the sensors and then adjustably control the moving direction of the mobile robotic vacuum cleaner via the driving system to guide the mobile robotic vacuum cleaner to accurately move toward the charging base.