Abstract:
A reaction apparatus comprises a first supply flow channel having a fine flow channel cross sectional area for a liquid pressurized by a pressurizing device, a gas supply flow channel having a fine flow channel cross sectional area for supplying a gas, a two-phase flow channel having a fine flow channel cross sectional area in communication with a joined portion for the first supply flow channel and the second supply flow channel for flowing a gas/liquid two-phase fluid, a gas bubble reaction flow channel in communication with the exit of the gas/liquid two-phase channel and having a flow channel cross sectional area larger than that of the gas/liquid two-phase flow channel, and a liquid discharge flow channel for discharging the liquid in the gas bubble reaction flow channel. Therefore, in the reaction apparatus, a stable mixing ratio of a gas to a liquid can be obtained and the mixing speed of the gas to the liquid is increased.
Abstract:
An apparatus and method is disclosed for producing hydrocarbons according to the Fischer-Tropsch process. The apparatus comprises a catalytic distillation reactor where reactants are fed into the catalytic distillation reactor to undergo catalytic reaction to form hydrocarbons. Physical separation of the unreacted materials and products occurs simultaneously in the catalytic distillation reactor. The catalytic distillation reactor is divided into reaction chambers so as to optimize control of the reaction and the distribution of hydrocarbon products. A monolith, such as a foam monolith or a honeycomb monolith, preferably a honeycomb monolith, is disposed with said reaction chamber serves both as catalyst support and as distillation packing material. A honeycomb monolith preferably includes channels having an axis disposed at a nonzero angle with respect to the axis of a reaction chamber containing the honeycomb monolith. External heat exchangers are provided for the recovery of the heat generated in the reaction.
Abstract:
Urea is prepared by reacting ammonia and carbon dioxide in an apparatus comprising a vertical condensation and synthesis column and a stripper, to provide a urea synthesis solution comprising urea, unreacted ammonia, unreacted carbon dioxide and water. The urea synthesis solution is transferred from the top of the vertical condensation and synthesis column to the top of a stripper. Carbon dioxide is introduced into the bottom of the stripper and contacted with the urea synthesis solution, thereby separating the unreacted ammonia and the unreacted carbon dioxide from the urea, and providing a mixed gas comprising ammonia, carbon dioxide and water. The mixed gas is transferred into the bottom of the vertical condensation and synthesis column, where it is reacted with liquid ammonia injected into the bottom and a middle of the vertical condensation and synthesis column. The mixed gas and liquid ammonia are condensed and react to form urea, Uncondensed gases are absorbed in an absorbing medium, which is subsequently recycled to the bottom of the vertical condensation and synthesis column.
Abstract:
A reactor for two-phase reaction, in particular for urea synthesis at high pressure and temperature of the type wherein a co-current flow of a gaseous phase and a liquid phase takes place, comprises a substantially cylindrical vertical external shell (2) in which is supported a plurality of superimposed horizontal perforated plates (6a-6e) in mutually spaced relationship and at least one opening (12a-12e) for liquid flow being defined in correspondence of each of the perforated plates. Advantageously the openings (12a-12e) for liquid flow are mutually offset so as to obtain a substantially zigzag preferential flow path for the liquid phase in the reactor.
Abstract:
Disclosed is a method and apparatus for conducting a mass transfer between a gas and a liquid, or for conducting a chemical reaction between a gas and a liquid. The method comprises supplying a liquid into a dynamic mixer, supplying a stripping gas or a reaction gas into the dynamic mixer, and flowing the liquid and the stripping gas or the reaction gas through the dynamic mixer in a turbulent co-current flow. The dynamic mixer includes a columnar casing, a rotor within the casing, which rotor has blades along substantially an entire length thereof, and stator blades positioned between the rotor blades within the casing along substantially an entire length of the casing.
Abstract:
Process for producing an olefin polymer of a low polydispersity index having low catalyst residues and low chlorine content, by polymerizing olefins in solution in the presence of a cationic catalyst, in a reactor containing a liquid phase comprising a liquid boiling hydrocarbon polymerization medium and having a vapor space above the liquid phase. The polymerization is carried out in the presence of a non-mechanical agent capable of suppressing foam formation during the polymerization.
Abstract:
This invention relates to methods of preparing dibasic acids, such as adipic acid for example, by oxidizing a hydrocarbon with a gas containing an oxidant, preferably oxygen. A respective hydrocarbon is reacted with a gaseous oxidant to form dibasic acid in a mixture which preferably contains a solvent, a catalyst, and an initiator. The temperature of the mixture is then lowered to a point at which solid dibasic acid is precipitated, while maintaining a single liquid phase. At least part of the formed acid is then removed. The lowering of the temperature is preferably performed at least partially by an operation selected from a group consisting of (a) evaporating at least part of the hydrocarbon or otherwise adjusting the hydrocarbon content of the mixture (b) lowering the pressure (c) adding matter having a temperature lower than the initial temperature (d) removing heat by external means (e) removing a first amount of heat by any suitable means, and adding a second amount of heat by external means, the first amount of heat being greater than the second amount of heat, and (f) a combination thereof.
Abstract:
The present invention relates to a process and apparatus for oxidizing an aqueous medium, which contains organic and/or oxidizable inorganic substances, at an increased temperature and an increased pressure for reducing the chemical oxygen demand of the aqueous medium to a predetermined desired level. The aqueous medium is introduced into a tubular reactor with an oxygen-containing medium. The tubular reactor contains a mechanism for dispersing bubbles of gaseous oxygen. The reactor contains sections through which the mixture of aqueous medium and oxygen containing medium serially flows. A degree of back-mixing in any one of the sections is equal to or less than the degree of back-mixing of an upstream section and the farthest downstream section has a smaller degree of back-mixing than the farthest upstream section.
Abstract:
Methods and devices for controlling the reaction rate of a hydrocarbon to an acid or other intermediate oxidation product by pressure drop rate adjustments. The pressure drop rate measurements arc conducted at predetermined time intervals, after stopping the feeding and exiting of gases. The pressure drop at a predetermined time interval is measured or the time it takes for the pressure to drop by a certain degree. Adjustments are then made in one or more temperature, feeding rates of hydrocarbon, solvent, catalyst, promoter, and the like until the pressure drop rate and the reaction rate fall within desirable predetermined limits.
Abstract:
Methods of making intermediate oxidation products by atomizing a first liquid (in the form of droplets) containing a reactant into a gas containing an oxidant in a manner to form an intermediate oxidation product different than carbon monoxide and/or carbon dioxide. The oxidation is controlled by monitoring the pre-coalescing temperature (temperature of the droplets just before they coalesce into a mass of liquid), or transient temperature difference (difference between the pre-coalescing temperature and the temperature of the droplets just before atomized), or transient conversion (conversion taking place in the time interval between the formation of the droplets and their coalescence into a mass of liquid) or a combination thereof.