Abstract:
A pulsed compression reactor may include a reactor housing, a spring piston, and a driver piston. The reactor housing may define an interior volume, and may include a first passage and a second passage which lead to the interior volume. The spring piston may be positioned within the interior volume, wherein the spring piston and the reactor housing at least partially define a perimeter of a gas spring buffer chamber within the interior volume. The driver piston may be positioned within the interior volume, wherein the spring piston, the driver piston, and the reactor housing at least partially define a perimeter of a reaction chamber within the interior volume.
Abstract:
An autoclave system comprises an autoclave vessel 210, for performing a leaching operation on sacrificial ceramic cores (not shown) and a storage vessel 220 for containing caustic leaching fluid 230. Interposed in a fluid flow path between the vessel 210 and the tank 220 is a heat exchange unit 240, comprising a body 250 containing a thermal exchange medium, in the form of water 260, and first and second thermal exchange conduits represented at 270 and 280. A thermal exchange medium inlet pipe 290a and a thermal exchange medium outlet pipe 290b are provided to the body so that the medium 260 can be replenished, preferably substantially continuously, to optimize thermal transfer efficiency.
Abstract:
Technologies are presented for reducing corrosion M supercritical water gasification through seeded sacrificial metal particles. The metal panicles may be seeded into one or more material input streams through high pressure injection. Once distributed in the SCWG reactor, the metal particles may corrode preferentially to the metal SCWG reactor walls and convert into metal oxides that precipitate out above the supercritical point of water. The precipitated metal oxides may then be collected downstream of the SCWG reactor to be reprocessed back into seed metal at a smelter. The seeded metal particles may complete a process material cycle with limited net additional waste.
Abstract:
The present disclosure relates to a vessel for separating, at a pressure of from 10 MPa to 50 MPa, a composition comprising liquid components and gaseous components into a liquid fraction and a gaseous fraction, whereinthe separation vessel has a vertically arranged cylindrical shape,has at its top a manhole, which is surrounded by a thickened part of the separation vessel wall;and bears at least one bursting disc which is held by a bursting disc holder which is installed pressure-tight within a boring in the thickened part of the separation vessel wall.
Abstract:
Alignment systems employing actuators provide relative displacement between lid assemblies of process chambers and substrates, and related methods are disclosed. A process chamber includes chamber walls defining a process volume in which a substrate may be placed and the walls support a lid assembly of the process chamber. The lid assembly contains at least one of an energy source and a process gas dispenser. Moreover, an alignment system may include at least one each of a bracket, an interface member, and an actuator. By attaching the bracket to the chamber wall and securing the interface member to the lid assembly, the actuator may communicate with the bracket and the interface member to provide relative displacement between the chamber wall and the lid assembly. In this manner, the lid assembly may be positioned relative to the substrate to improve process uniformity across the substrate within the process chamber.