Abstract:
A mixing reactor (10) for precipitating nanoparticles by mixing a precursor fluid with a second fluid at a higher temperature than the precursor fluid. The reactor comprises: a first fluid conduit (1) with an inlet region (3) configured to receive a flow of the precursor fluid, and an outlet region (4) configured to output a mixed flow; and a second fluid conduit (2) configured to receive a flow of the second fluid. The second fluid conduit (2) extends into the first fluid conduit (1) in a direction substantially perpendicular to the flow within the first fluid conduit, and has an opening (5) for introducing the second fluid into the first fluid conduit. Related processes for producing nanoparticles are disclosed.
Abstract:
A instrument for performing synthesis of small molecules such as Oligos and Peptides when using solid phase synthesis techniques to synthesize small molecules. The system and methods include a mechanism for controlling the pressure differential across the reaction vessels that contain the solid support used in solid phase synthesis. Reaction vessels are held in a holder that provides a sealable chamber at the outlet ends of the reaction vessels. The rotor containing the reaction vessels is placed within a sealable chamber. The sealable chamber is fitted with a means for engaging the rotor and draining the reaction vessels to waste. The sealable chamber is also fitted with a means for engaging the rotor to drain the reaction vessels at a slower, variable rate.
Abstract:
A high pressure apparatus and related methods for processing supercritical fluids. In a specific embodiment, the present apparatus includes a capsule, a heater, at least one ceramic ring but can be multiple rings, optionally, with one or more scribe marks and/or cracks present. In a specific embodiment, the apparatus optionally has a metal sleeve containing each ceramic ring. The apparatus also has a high-strength enclosure, end flanges with associated insulation, and a power control system. IN a specific embodiment, the apparatus is capable of accessing pressures and temperatures of 0.2-2 GPa and 400-1200° C., respectively.
Abstract:
The present invention is directed to a multi-compartment autoclave using inter-compartment dividers having one or more underflow openings for passing a feed stream between compartments.
Abstract:
The invention provides an apparatus and a process for the high pressure polymerization of ethylene, optionally with one or more comonomers, in which unreacted monomer is separated from the polymer in a separation system having at least first, second and third separation vessels and in which off gas from the second vessel is recombined back into the product mixture upstream of the first separation vessel, preferably using a jet pump.
Abstract:
A method and device for oxidization of materials in supercritical water. The method involves a) introducing a fluid containing water and an oxidizing agent in a ring-shaped area and through a first end of a substantially tube-shaped reactor comprising an external wall and an internal tube, b) heating the fluid in the ring-shaped area, c) introducing the heated fluid into the internal tube and simultaneously introducing material to be treated into said internal tube at a second end of the reactor, d) mixing the fluid and the material to be treated in a first portion of the internal tube, followed by cooling the obtained mixture in a second portion of the internal tube, and e) isobarically discharging the fluid/oxidized material from the internal tube of the reactor.
Abstract:
A method and device for oxidization of materials in supercritical water. The method involves a) introducing a fluid containing water and an oxidizing agent in a ring-shaped area and through a first end of a substantially tube-shaped reactor comprising an external wall and an internal tube, b) heating the fluid in the ring-shaped area, c) introducing the heated fluid into the internal tube and simultaneously introducing material to be treated into said internal tube at a second end of the reactor, d) mixing the fluid and the material to be treated in a first portion of the internal tube, followed by cooling the obtained mixture in a second portion of the internal tube, and e) isobarically discharging the fluid/oxidized material from the internal tube of the reactor.
Abstract:
The invention relates to a high pressure method for producing pure melamine by pyrolyzing urea in a vertical synthesis reactor. The synthesis reactor has three stages above one another: a) in the first stage, the smaller portion of the total amount of urea is introduced into the central tube of a first tank reactor forming a first melamine-containing reaction medium; b) in the second stage, the first melamine-containing reaction medium and the larger portion of the total amount of urea is introduced into the central tube of a second tank reactor forming a second melamine-containing reaction medium; c) in the third stage, the second melamine-containing reaction medium is introduced into a vertical tubular flow reactor forming a raw melamine melt that is processed to obtain pure melamine.
Abstract:
A supercritical oxidation process carried out in water is capable of oxidizing “organics” in precious metal organic compositions such as heterogeneous (Pt/C) or homogeneous precious metal catalysts and producing a precious metal oxide with few by-products and low losses of precious metal.
Abstract:
A process for producing hollow, single-walled carbon nanotubes by catalytic decomposition of one or more gaseous carbon compounds by first forming a gas phase mixture carbon feed stock gas comprising one or more gaseous carbon compounds, each having one to six carbon atoms and only H, O, N, S or el as hetero atoms, optionally admixed with hydrogen, and a gas phase metal containing compound which is unstable under reaction conditions for said decomposition, and which forms a metal containing catalyst which acts as a decomposition catalyst under reaction conditions; and then conducting said decomposition reaction under decomposition reaction conditions, thereby producing said nanotubes.