Abstract:
A method for increasing the Seebeck coefficient of a semiconductor involves creating a reaction cell including a semiconductor in a pressure-transmitting medium, exposing the reaction cell to elevated pressure and elevated temperature for a time sufficient to increase the Seebeck coefficient of the semiconductor, and recovering the semiconductor with an increased Seebeck coefficient.
Abstract:
In one embodiment of the present invention, an assembly for HPHT processing comprises a can with an opening. A powder mixture is disposed within the opening. A substrate is disposed within the opening adjacent the powder mixture. Paint is coated on a surface within the opening and opposite the powder mixture with respect to the substrate. A meltable sealant is disposed within the opening and opposite the substrate with respect to the surface and a cap is covering the opening.In another embodiment of the present invention, an assembly for HPHT processing comprises a can with an opening, a powder mixture is disposed within the opening, a substrate disposed within the opening adjacent and above the powder mixture, a formable sealant barrier is disposed within the opening above the substrate, a meltable sealant is disposed within the opening above the formable sealant barrier, and a cap covers the opening.
Abstract:
PCD materials comprise a diamond body having bonded diamond crystals and interstitial regions disposed among the crystals. The diamond body is formed from diamond grains and a catalyst material at high pressure/high temperature conditions. The diamond grains have an average particle size of about 0.03 mm or greater. At least a portion of the diamond body has a high diamond volume content of greater than about 93 percent by volume. The entire diamond body can comprise high volume content diamond or a region of the diamond body can comprise the high volume content diamond. The diamond body includes a working surface, a first region substantially free of the catalyst material, and a second region that includes the catalyst material. At least a portion of the first region extends from the working surface to depth of from about 0.01 to about 0.1 mm.
Abstract:
A layer of single crystal CVD diamond of high quality having a thickness greater than 2 mm. Also provided is a method of producing such a CVD diamond layer.
Abstract:
In one embodiment of the present invention, an assembly for HPHT processing comprises a can with an opening. A powder mixture is disposed within the opening. A substrate is disposed within the opening adjacent the powder mixture. Paint is coated on a surface within the opening and opposite the powder mixture with respect to the substrate. A meltable sealant is disposed within the opening and opposite the substrate with respect to the surface and a cap is covering the opening.In another embodiment of the present invention, an assembly for HPHT processing comprises a can with an opening, a powder mixture is disposed within the opening, a substrate disposed within the opening adjacent and above the powder mixture, a formable sealant barrier is disposed within the opening above the substrate, a meltable sealant is disposed within the opening above the formable sealant barrier, and a cap covers the opening.
Abstract:
PCD materials comprise a diamond body having bonded diamond crystals and interstitial regions disposed among the crystals. The diamond body is formed from diamond grains and a catalyst material at high pressure/high temperature conditions. The diamond grains have an average particle size of about 0.03 mm or greater. At least a portion of the diamond body has a high diamond volume content of greater than about 93 percent by volume. The entire diamond body can comprise high volume content diamond or a region of the diamond body can comprise the high volume content diamond. The diamond body includes a working surface, a first region substantially free of the catalyst material, and a second region that includes the catalyst material. At least a portion of the first region extends from the working surface to depth of from about 0.01 to about 0.1 mm.
Abstract:
A method to provide a high pressure press with a replaceable wear liner. The wear liner is first inserted into the cylindrical pressure chamber of the press and the pre-stressed by the application of an excess pressure above the yield point. The excess pressure is sufficient to increase the diameter of the wear liner and produce a residual radial compressive stress that holds the wear liner in place. When the wear liner is removed from the press it is dismantled. The advantage of the invention is that the replaceable wear liner, and a high pressure press comprising it, may be relatively inexpensive to produce and the replaceable wear liner may be quickly and simply replaced.
Abstract:
A method of bonding a particle material to near theoretical density, includes placing a particle material in a die. In the first stage, a pulsed current of about 1 to 20,000 amps., is applied to the particle material for a predetermined time period, and substantially simultaneously therewith, a shear force of about 5-50 MPa is applied. In the second stage, an axial pressure of about less than 1 to 2,000 MPa is applied to the particle material for a predetermined time period, and substantially simultaneously therewith, a steady current of about 1 to 20,000 amps, is applied. The method can be used to bond metallic, ceramic, intermetallic and composite materials to near-net shape, directly from precursors or elemental particle material without the need for synthesizing the material. The method may also be applied to perform combustion synthesis of a reactive material, followed by consolidation or joining to near-net shaped articles or parts. The method may further be applied to repair a damaged or worn substrate or part, coat a particle onto a substrate, and grow single crystals of a particle material.
Abstract:
A synthetic gasket material for use in a high-pressure press includes a major proportion of clay mineral powder having sufficient lubricity to flow in a high-pressure press, a minor proportion of at least one hard material powder having a sufficiently greater hardness than the clay mineral to retard flow of the clay mineral and form a seal during pressing in a high-pressure press, and a sufficient amount of binder to form an integral body. The synthetic gasket material is formed by thoroughly mixing together in desired proportions the clay mineral, hard material, and binder. The mixture is compacted into a body near net geometry and having a desired configuration to facilitate use in the high-pressure press. The compacted body is heated for a sufficient time and at a sufficient temperature to remove non-crystallographic water. A synthetic gasket material prepared according to principles of this invention displays improved flow, pressure transmitting, and thermal insulating properties when compared with gasket material made from natural pyrophyllite, due to the improved compositional consistency, i.e., lack of impurities and consistently low moisture content, of the synthetic gasket material.
Abstract:
A process such as a leaching, etching or pickling process which uses an aqueous acidic medium containing nitric acid is improved by carrying out the process in the presence of an oxidizing atmosphere in a closed contained.