Abstract:
A suspension of nanodiamond aggregates according to the present invention is a suspension of detonation nanodiamond aggregates. The suspension has such a pH and an electric conductivity as to meet one of conditions (1) and (2) as follows. (1) The suspension has a pH of 4 to 7 and an electric conductivity of 50 μS/cm or less per weight percent of the solids concentration of the suspension; and (2) the suspension has a pH of 8 to 10.5 and has an electric conductivity of 300 μS/cm or less per weight percent of the solids concentration of the suspension.
Abstract:
A gas reactor system may be configured for facilitating chemical reactions of gases using shockwaves produced in a supersonic gaseous vortex. The system may include a gas source to provide a gas to a heater and/or a reactor. The reactor may be configured to facilitate chemical reactions of gases using shockwaves created in a supersonic gaseous vortex. The reactor may be arranged with a gas inlet to introduce a high-velocity steam of gas into a chamber of the reactor. The gas inlet may effectuate a vortex of supersonic circulating gas within the chamber. The vortex may rotate at supersonic speed about the longitudinal axis of the chamber. The system may be configured to store an output product of the reactor in a storage tank in fluid communication with the reactor.
Abstract:
The present invention relates to a fluid shockwave reactor. The fluid shockwave reactor introduces laser resonance theory into the field of fluid physics. It consists of a shockwave resonance energy concentration device and at least one set of jet collision device. The shockwave resonance energy concentration device can enhance the shockwave strength produced during jet collisions; strengthen the ultrahigh pressure and cavitation effect of the shockwave field; it can also intensify physical and chemical effects on the processed materials. The fluid shockwave reactor can achieve ultrafine crushing on the fluid materials with lower energy consumption. Under certain technological conditions, the fluid shockwave reactor may also effectively catalytize the chemical reaction process on fluid materials.
Abstract:
A method of dispersing graphene and graphitic nanomaterials uses multiphase fluid dynamic technique. The method includes a device, incorporating high intensity fluid dynamics technique (10), controlling the expansion and compression ratio of the working stream that leads to an effective dispersion of the nanomaterial in the matrix. The condensation of the injected steam creates high intensity and controllable cavitation, leading to effective dispersion of the graphitic nanomaterial. The dispersion is most preferably done in a medium that creates a repulsive potential to balance the attractive inter-graphitic layer potential.
Abstract:
Apparatus and methods are provided for converting methane in a feed stream to acetylene. A hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process. An acid washing system is employed to wash the reactor effluent to remove any copper acetylide byproducts that may be present in the reactor effluent, or alternatively to decompose any copper acetylide byproducts that may remain in the reactor after shutdown of the reactor.
Abstract:
The present document describes a method and apparatus to rapidly reticulate closed-cell or partially closed-cell foams. The method involves the propagation of an energy impulse inside the foam; the energy impulse can be a shock wave. The energy impulse is generated in the same gaseous environment in which the foam is immersed, preferentially air in room condition. The energy impulse destroys the membranes closing the foam cells without disintegrating the frame's structure. In particular, the method rapidly improves the acoustic and filtering behavior of the foams.