Abstract:
A novel vehicle deceleration control device for ensuring a proper distance between a vehicle and a preceding vehicle, etc., equipped on a vehicle, automatically decelerates the vehicle by controlling braking force based on a target deceleration, calculated based on a relative distance and a relative speed between the vehicle and its preceding vehicle, etc., when automatic deceleration is required. The inventive device, however, will decelerate the own vehicle based on a maximum allowable deceleration when the magnitude of the target deceleration is larger than the magnitude of the maximum allowable deceleration, restricting the vehicle deceleration. The maximum allowable deceleration is determined based on the vehicle speed of the own vehicle when a predetermined condition is satisfied, and maintained at a constant or within a predetermined range, thereby enabling a driver to judge the necessity of braking operation by himself during restricting the vehicle deceleration more easily than ever.
Abstract:
A risk potential calculating device for a vehicle, comprises a state recognition device that detects vehicle conditions of a subject vehicle and a traveling environment for vehicle surroundings; and a risk potential calculator that calculates a risk potential for the vehicle surroundings based on detection results of the state recognition device. The risk potential calculator calculates the risk potential by respectively calculating a first risk potential expressing a risk in a case where driving conditions of the subject vehicle are in a steady state and a second risk potential expressing a risk for a case where driving conditions of the subject vehicle are in a transient state, and adding the first risk potential weighted by a first coefficient and the second risk potential weighted by the second coefficient.
Abstract:
A vehicle driving assist system executes an actuation reaction force control of accelerator pedal, a driving force control or a braking force control in a manner that is appropriate in consideration of the traffic situation in which the vehicle is being driven. The vehicle driving assist system calculates a risk potential that indicates the degree of convergence between the vehicle and an obstacle existing in front of the vehicle based on a prescribed control pattern. Then, based on the risk potential, the accelerator pedal actuation reaction, the host vehicle driving force and/or the host vehicle braking force are controlled. The intent of the driver regarding acceleration and deceleration based on the actuation state of the accelerator pedal is preferably used in controlling one or all of the accelerator pedal actuation reaction, the host vehicle driving force and the host vehicle braking force.
Abstract:
A vehicle braking control assistance device includes: a speed detecting unit for detecting current vehicle speed; a brake force detecting unit for detecting the current braking force; a deceleration target point determining unit for determining a target point for deceleration control; a target vehicle speed determining unit for determining a target vehicle speed at the deceleration target point; an ideal brake force determining unit for determining an ideal brake force to be applied in continued movement to the deceleration target point with the target vehicle speed realized at the deceleration target point, based on the current vehicle speed, the deceleration target point and the target vehicle speed; a notification information generating unit for generating notification information indicating the relationship between the ideal brake force and the current brake force; and a notification unit for bringing the generated notification information to the attention of the driver.
Abstract:
A system and method for brake pre-charging includes pre-filling brakes, based on proximity information from a forward-looking sensor, to reduce the initial delays associated with braking. By reducing the initial delay in converting driver brake pressure requests into actual brake torque to the wheels, the stopping distance required for braking is reduced.
Abstract:
A method for setting a desired longitudinal deceleration or longitudinal acceleration in a vehicle, in which—at vehicle longitudinal speeds above a limiting value, a first mode is used and—at vehicle longitudinal speeds below the limiting value, a second mode is used.
Abstract:
A distance, speed and direction sensitive processor coupled to a brake controller. The processor executes instructions to compare actual vehicle performance with that of a deceleration profile and modulates the brake controller to bring vehicle performance into agreement with the profile. Distance information is provided by a radar sensor for long ranges, an ultrasonic sensor for medium ranges, and a wheel rotation sensor for short ranges. Speed information is provided by a vehicle mounted sensor or calculated by the processor based on distance. Direction information is provided by a vehicle mounted switch or determined by the processor based on distance. The brake controller includes a hold valve and a dump valve, each of which is modulated with a pulse train signal.
Abstract:
A lane deviation avoidance system for an adaptive cruise control system equipped vehicle includes an electronic control unit that executes a host vehicle's lane deviation avoidance control in which a change in vehicle dynamic behavior occurs in a direction that avoids the host vehicle from deviating from a driving lane when there is a possibility of the host vehicle's lane deviation from the driving lane. The control unit puts a priority on the lane deviation avoidance control by limiting a driving force acting on the host vehicle, when there is the possibility of the host vehicle's lane deviation from the driving lane.
Abstract:
A driving state determining system in a vehicle recognizes an obstruction that may collide with the vehicle based on obtained various information. The system executes a plurality of danger determinations that have individual determination conditions, based on a relative distance and a relative speed with the obstruction to thereby comprehensively determine one of danger regions that the vehicle is situated in. The danger regions are classified depending on a danger degree. The system then outputs a determined result to relevant devices. Each of the relevant devices thereby determines operation by obtaining the comprehensively determined result outputted by the system. Consequently, the relevant devices can function more cooperatively and more effectively to lead to increase in safety than another system where each of relevant devices determines operation by individually collecting information.
Abstract:
In an automotive lane deviation avoidance system that prevents a host vehicle from deviating from its driving lane by correcting the host vehicle's course in a direction that avoids the host vehicle's lane deviation in the presence of a possibility of the host vehicle's lane deviation, the system calculates a desired yawing moment needed to avoid the host vehicle's lane deviation from the driving lane. The system compensates for the desired yawing moment by a correction factor or a gain, which is determined based on a throttle opening of the host vehicle.