Abstract:
A dry adhesive and a method of forming a dry adhesive. The method includes forming an opening through an etch layer and to a barrier layer, expanding the opening in the etch layer at the barrier layer, filling the opening with a material, removing the barrier layer from the material in the opening, and removing the etch layer from the material in the opening.
Abstract:
A device is made by forming sacrificial fibers on a substrate mold. The fibers and mold are covered with a first material. The substrate mold is removed, and the covered fibers are then removed to form channels in the first material.
Abstract:
Layered nanostructures are constructed by imprinting material with a mold, while selectively modifying and removing a portion of the mold. The mold, which includes a pattern of features, is modified so that the portion of the mold that includes the features is made chemically and/or physically distinct from the rest of the mold. That portion of the mold that includes the features is retained while the rest of the mold is removed. The retained portion of the mold provides mechanical support for any adjoining layer or layers.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
Layered nanostructures are constructed by imprinting material with a mold, while selectively modifying and removing a portion of the mold. The mold, which includes a pattern of features, is modified so that the portion of the mold that includes the features is made chemically and/or physically distinct from the rest of the mold. That portion of the mold that includes the features is retained while the rest of the mold is removed. The retained portion of the mold provides mechanical support for any adjoining layer or layers.
Abstract:
A device is made by forming sacrificial fibers on a substrate mold. The fibers and mold are covered with a first material. The substrate mold is removed, and the covered fibers are then removed to form channels in the first material.
Abstract:
Embodiments of the present invention relate to a UV-curable polyurethane-methacrylate (PUMA) substrate for manufacturing microfluidic devices. PUMA is optically transparent, biocompatible, and has stable surface properties. Embodiments include two production processes that are compatible with the existing methods of rapid prototyping, and characterizations of the resultant PUMA microfluidic devices are presented. Embodiments of the present invention also relate to strategies to improve the production yield of chips manufactured from PUMA resin, especially for microfluidic systems that contain dense and high-aspect-ratio features. Described is a mold-releasing procedure that minimizes motion in the shear plane of the microstructures. Also presented are simple yet scalable able methods for forming seals between PUMA substrates, which avoids excessive compressive force that may crush delicate structures. Two methods for forming interconnects with PUMA microfluidic devices are detailed. These improvements produce a microfiltration device containing closely spaced and high-aspect-ratio fins, suitable for retaining and concentrating cells or beads from a highly diluted suspension.
Abstract:
The invention provides a device for adhering cells in a specific and predetermined position, and associated methods. The device includes a plate defining a surface and a plurality of cytophilic islands that adhere cells, isolated by cytophobic regions to which cells do not adhere, contiguous with the cytophilic islands. The islands or the regions or both may be formed of a self-assembled monolayer (SAM).
Abstract:
The invention relates to a method (3) of fabricating a mould (39, 39′) including the following steps: a) depositing (9) an electrically conductive layer on the top (20) and bottom (22) of a wafer (21) made of silicon-based material; b) securing (13) said wafer to a substrate (23) using an adhesive layer; c) removing (15) one part (26) of said conductive layer from the top of the wafer (21); d) etching (17) said wafer as far as the bottom conductive layer (22) thereof in the shape (26) of said part removed from the top conductive layer (22) to form at least one cavity (25) in said mould. The invention concerns the field of micromechanical parts, particularly for timepiece movements.
Abstract:
Disclosed is a method of forming a structured sintered article including providing a mixture comprising a sinterable particulate material and a binder, the binder comprising, as a function of total resin content of the binder, at least 50% by weight of a thermoplastic binder material and at least 5% by weight of a radiation-curable binder material; shaping the mixture with a mold to form a structure; setting the structure by cooling the structure or by allowing the structure to cool; separating the structure from the mold; irradiating the structure so as to at least partially cure the radiation-curable binder material, and debinding and sintering the structure so as to form a structured sintered article. Shaping may include forming a structure having one or more open channels, and sintering may include sintering in together in contact with at least one additional structure so as to cover or enclose the channels.