Abstract:
An un-reacted substantially formaldehyde free curable binder solution for binding loose matter consists essentially of a solution obtainable by dissolving a reducing sugar, an ammonium salt acid precursor, optionally a carboxylic acid or a precursor thereof and optionally ammonia in water.
Abstract:
A method of manufacturing a mineral fibre thermal insulation product comprises the sequential steps of: Forming mineral fibres from a molten mineral mixture; Spraying a substantially formaldehyde free binder solution on to the mineral fibres, the binder solution comprising: a reducing sugar, an acid precursor derivable from an inorganic salt and a source of nitrogen; Collecting the mineral fibres to which the binder solution has been applied to form a batt of mineral fibres; and Curing the batt comprising the mineral fibres and the binder which is in contact with the mineral fibres by passing the batt through a curing oven so as to provide a batt of mineral fibres held together by a substantially water insoluble cured binder.
Abstract:
A surface coating material is provided for forming a hydrophilic oil repellent layer on at least a part of the surface of a substrate, and the surface coating material includes one or more fluorine-based compounds represented by the following formulas (1) to (4), a binder, and a solvent.
Abstract:
There is provided a composition comprising: (i) a hyperbranched polymer having peripheral reactive groups comprising epoxy functional groups and hydroxyl functional groups; and (ii) a compound having one or more hydrophilic functional groups, wherein the amount of epoxy functional groups relative to the total number of peripheral reactive groups does not render the hyperbranched polymer from being indispersible in an aqueous solvent. There is also provided a method of preparing the same and uses thereof.
Abstract:
A method of manufacturing a mineral fiber thermal insulation product comprises the sequential steps of: Forming mineral fibers from a molten mineral mixture; spraying a substantially formaldehyde free binder solution on to the mineral fibers, the binder solution comprising: a reducing sugar, an acid precursor derivable from an inorganic salt and a source of nitrogen; Collecting the mineral fibers to which the binder solution has been applied to form a batt of mineral fibers; and Curing the batt comprising the mineral fibers and the binder which is in contact with the mineral fibers by passing the batt through a curing oven so as to provide a batt of mineral fibers held together by a substantially water insoluble cured binder.
Abstract:
There is provided a cured-film formation composition that forms a cured film having excellent photoreaction efficiency and solvent resistance, and high adhesion, an orientation material for photo-alignment, and a retardation material formed with the orientation material.
Abstract:
An un-reacted substantially formaldehyde free curable binder solution for binding loose matter consists essentially of a solution obtainable by dissolving a reducing sugar, an ammonium salt acid precursor, optionally a carboxylic acid or a precursor thereof and optionally ammonia in water.
Abstract:
An un-reacted substantially formaldehyde free curable binder solution for binding loose matter consists essentially of a solution obtainable by dissolving a reducing sugar, an ammonium salt acid precursor, optionally a carboxylic acid or a precursor thereof and optionally ammonia in water.
Abstract:
The invention provides heat-curable thixotropic mixtures containing carbamate and/or allophanate groups, including at least one oligomer and/or polymer containing at least one of carbamate and allophanate groups, and at least one thixotropic agent that is a urea derivative preparable by reacting at least one amine and/or water with at least one isocyanate in the presence of at least one amino resin. The invention further provides processes for preparing the mixtures and coating materials, adhesives and sealing compounds prepared from the mixtures.
Abstract:
The present invention provides a reaction product having polyether carbamate groups formed from (A) polyoxyalkylene amine, and (B) cyclic carbonate, in an equivalents ratio ranging from 1:0.5 to 1:1.5. Further provided is a process for preparing the aforementioned reaction product. The present invention also is directed to an improved curable coating composition including (1) a reactive functional group-containing polymer, and (2) a curing agent having functional groups reactive with the functional groups of (1), the improvement being the inclusion in the coating composition the reaction product. Multilayer composite coatings including a first coating layer formed from the curable coating composition and a second coating layer over the curable coating composition are also provided, as well as coated substrates.