Abstract:
A steel cord (10) adapted for the reinforcement of elastomeric products comprises a core strand (12) and a layer of outer strands (14) arranged around the core strand (12). The core strand (12) comprises a core and at least a layer arranged around the core. The core further comprises one to three core filaments and the layer further comprises three to nine layer filaments. The core strand (12) has a first wave form and each filament of the outer strands (14) has a second wave form such that the first wave form is substantially different from the second wave form. This allows to guarantee full rubber penetration.
Abstract:
Metal cord (C-1) with three layers (C1, C2, C3), which is rubberized in situ, comprising a core or first layer (10, C1) of diameter d1, around which there are wound together in a helix at a pitch p2, in a second layer (C2), N wires (11) of diameter d2, around which there are wound together in a helix at a pitch p3, in a third layer (C3), P wires (12) of diameter d3, wherein the cord has the following characteristics (d1, d2, d3, p2 and p3 being expressed in mm): 0.08≦d1≦0.50; 0.08≦d2≦0.45; 0.08≦d3≦0.45; 5.1π(d1+d2)
Abstract:
Method of manufacturing a metal cord with three concentric layers (C1, C2, C3), rubberized in situ, of M+N+P construction, comprising a first, internal, layer (C1) consisting of M wires of diameter d1, M varying from 1 to 4, around which there are wound together in a helix, at a pitch p2, in a second, intermediate, layer (C2), N wires of diameter d2, N varying from 3 to 12, around which there are wound together as a helix at a pitch p3, in a third, outer, layer (C3), P wires of diameter d3, P varying from 8 to 20, the said method comprising the following steps which are performed in line: an assembling step by twisting the N wires around the first layer (C1) in order to form, at a point named the “assembling point”, an intermediate cord named a “core strand” of M+N construction; downstream of the assembling point, a sheathing step in which the M+N core strand is sheathed with a rubber composition named “filling rubber” in the uncrosslinked state; an assembling step in which the P wires of the first layer (C3) are twisted around the core strand thus sheathed; a final twist-balancing step. Also disclosed is a device for implementing such a method.
Abstract:
A steel cord (50) comprises a core layer and an outer layer. The core layer comprises a number of first steel filaments (10) and the outer layer comprises a number of second steel filaments (20). The outer layer is helically twisted around the core layer. The first steel filaments have a twisting pitch greater than 310 mm. At least one of the first steel filaments (10) is wavy preformed in one plane. At least one of the second steel filaments (20) is polygonally preformed.
Abstract:
The invention relates to cord (20) comprising a number of filaments twisted together. The peripheral surface of the cord (20) is at least partially coated with an adhesion promoting coating (24). The adhesion promoting coating (24) comprises at least a first layer comprising a silicon based coating, a titanium based coating, a zirconium based coating or a combination thereof. The invention further relates to a composite material comprising such a cord (20) embedded in a polymer material. Furthermore the invention relates to a method to manufacture such a cord (20).
Abstract:
A steel cord (10) adapted for the reinforcement of rubber products, the steel cord (10) comprises a core (12) and three or more outer strands (14) twisted around the core (12) in a cord twisting direction. The outer strands (14) comprise outer filaments (16) twisted in a strand twisting direction which is the same as the cord twisting direction. The outer strands (14) have a wavy form which makes spaces between the core (12) and the outer strands. The steel cord (10) has improvements on elongation at break and impact resistance capacity.
Abstract:
A two-layer cord having a number of wires in the outer layer, enclosing, but not completely, a cord core formed by a plurality of core wires, and in which the core wires are not preformed, while at least some of the outer wires are preformed.
Abstract:
A steel cord for reinforcement of rubber articles, whose cord strength is enhanced by preventing occurrence of preceding break of the outermost layer filaments in the steel cord having a multi-twisted structure, and a pneumatic tire using it as a reinforcing material are provided.In a steel cord for reinforcement of rubber articles having a multi-twisted structure in which a plurality of strands are twisted together, which strands have a layered twisted structure in which a plurality of steel filaments are twisted together, dc/ds, which represents the ratio between dc, the diameter of outermost layer sheath filaments constituting the outermost layer sheath of a core strand, and ds, the diameter of outermost layer sheath filaments constituting the outermost layer sheath of sheath strands, is 1.05 to 1.25.
Abstract:
A wire rope is provided which has an independent wire rope core (IWRC) covered by a plastic jacket. Outer strands are laid on this plastic jacket and wormings or spacers extend from the plastic jacket in between the outer strands to form gaps between the outer strands. Another jacket is provided over the outer strands which also fills the gaps between the outer strands. Both the IWRC and the outer strands are preferably lubricated. A method is also disclosed for manufacturing such wire rope.
Abstract:
In order that spaces, including a space in the central portion, inside a steel cord used as a reinforcement by being embedded in a tire or the like are filled with an uncured rubber, the uncured rubber is coated on plural steel core filaments which are then stranded to form a single layer steel cord, the core then being stranded with uncoated outer layer filaments. Consequently, it is possible to exhibit satisfactory corrosion resistance and satisfactory fatigue resistance as a steel cord, shorten a curing time in tire component assembling or the like to attain energy saving and prolong the life of a steel cord itself and the life of a tire or the like using the same as a reinforcement. Further, production can be performed at low cost.