Abstract:
The invention relates to an actuating device that actuates engine valves, comprising magnetizing means, a spring having a fixed end connected to an adjustable stop and having a moving end connected to the valve (1). The adjustable stop comprises meshing means (26) that can interact with a control element (8, 10) whereby enabling the tare of the spring to be adjusted, and comprises an orifice (11) located between the adjustable stops of the two valves (1) of the same pair and serving to accommodate the control element (8, 10). The invention is characterized in that the control element (8, 10) comprises positioning means (12) that interact with complementary means (13) whereby making it possible to locate two stable positions respectively corresponding to the meshing positions with the two adjustable stops of the two valves (1) and to immobilize the control element (8, 10) in these positions.
Abstract:
The present invention relates to a variable valve operating device and a valve opening amount adjustment method, and can accurately control the amount of in-cylinder air and the strength of a swirl flow. The variable valve operating device according to the present invention includes a valve mechanism that can select a dual valve variable control mode in which the valve opening amounts of a first valve and a second valve, which are of the same type and provided for the same cylinder, can be varied continuously or in multiple steps. A valve opening amount difference is provided when the valve opening amounts are minimized in the dual valve variable control mode so that the valve opening amount of the first valve is larger than that of the second valve. In addition, adjustments are made so that the minimum valve opening amount of the first valve does not vary from one cylinder to another.
Abstract:
An apparatus and method for automatically adjusting the valve lash of an internal combustion engine is provided. In another aspect of the present invention, a probe is employed for verifying and/or setting valve lash settings in an automated manner. A further aspect of the present invention does not require determination of a zero lash position or reference datum prior to adjusting the valve lash adjusting screw for desired lash.
Abstract:
An apparatus and method for automatically adjusting the valve lash of an internal combustion engine is provided. In another aspect of the present invention, a probe is employed for verifying and/or setting valve lash settings in an automated manner. A further aspect of the present invention does not require determination of a zero lash position or reference datum prior to adjusting the valve lash adjusting screw for desired lash.
Abstract:
A valve timing adjusting device includes: a first rotor rotating integrally with a crankshaft; a second rotor integrally secured to an intake or exhaust camshaft; and an engaging cavity provided in one of the first rotor and the second rotor. A lock pin is housed in a housing hole provided in the other of the first rotor and the second rotor, protruded by the energizing force of an energizing device at the time of hydraulic pressure reduction, to thus abut on the wall of the engaging cavity from an oblique direction to give a relative rotating force to the first rotor and the second rotor.
Abstract:
A valve control system for an internal combustion engine includes a valve actuation system that actuates each of an intake valve and an exhaust valve between N open lift modes where N is an integer greater than one. A control module defines a switching window having a start time based on intake valve timing and an end time based on exhaust valve timing. The control module enables transitioning of at least one of the intake and exhaust valves between the N open lift modes based on the switching window.
Abstract:
A valve control system for an internal combustion engine includes a valve actuation system. The valve actuation system includes at least one of first and second configurations. The first configuration includes a shared lift control valve that actuates an intake valve and an exhaust valve between N open lift modes, where N is an integer greater than one. A second configuration includes a first lift control valve that actuates the intake valve and not the exhaust valve and a second lift control valve that actuates the exhaust valve and not the intake valve between the N open lift modes. A control module that enables transitioning of at least one of the intake and exhaust valves between the N open lift modes for the first and second configurations.
Abstract:
A valve control system for an internal combustion engine includes a valve actuation system. The valve actuation system includes lift control valves that actuate at least one of an intake valve and an exhaust valve between N open lift modes, where N is an integer greater than one. A control module enables transitioning of at least one of the intake valve and the exhaust valve between the open lift modes. The control module synchronizes transitions between the N open lift modes with crankshaft and valvetrain timing. The control module generates an engine position synchronization signal based on the transitioning.
Abstract:
A belt gear-positioning device to be assembled on gear(s) includes positioning rod(s), securing fixture(s), wing nut(s) and positioning strip(s). By turning and adjusting the positioning rod(s), the securing fixture(s) can be respectively engaged tightly in the spoke spaces of the gear(s) for securing the gear(s), avoiding damaging the surfaces of the teeth of the gear(s) and making it possible to safely carry out timing belt removal and/or replacement.
Abstract:
A variable valve apparatus uses a camshaft provided rotatably in an internal combustion engine, and has a cam, a rocking cam driven by a cam, a intake valve or an exhaust valve driven by the rocking cam, a control shaft rotatably provided side by side with the camshaft in the engine, and has an oil passage inside to flow oil, a control arm whose one end is held by the control shaft, and the other end is projected from the control shaft, an actuator which rotates the control shaft, and displaces the control arm, a transmission arm which is rotatably connected to the other end of the control arm, and transmits the displacement of the control arm to the rocking cam, and a lubricant passage which is provided inside the control arm, and supplies oil in the oil passage to a part connecting the control arm and transmission arm.