Abstract:
A high-speed fluorescence scanner for scanning a sample at equal angles is disclosed. The scanner has most of its optical components, including a light beam source, a detector, and various filters, lenses, and reflectors, in a fixed position, removed from the scan head. The lightweight scan head contains a single reflector and lens combination which is reciprocated rapidly along one axis to lengthen and shorten a region of the path of a collimated excitation beam and to form a scan line on a sample. The fluorescence emission may be gathered by the lens of the scan head and directed back, generally along the optical path of the excitation beam, to a detector. Another embodiment of the scanner places the light source, in miniature form, directly on the scan head. The sample may be translated in an axis orthogonal to the scan line in order to stimulate fluorescent emission from a two-dimensional portion of the sample. The design of the optical assembly currently permits scan speeds of up to approximately 100 inches per second.
Abstract:
An on-line scanning sensor system includes a mid-infrared spectrophotometric analyzer, such as an interferometer, that can be used on-line in manufacturing environments. More particularly, the on-line scanning sensor system includes a first carriage for scanning motion across a traveling sheet of material; interferometer components that are carried by the first carriage and that includes devices for splitting and recombining infrared light, and for directing a collimated beam of the recombined light onto a traveling web of sheet material. Further, the system includes a detector system for receiving light from the interferometer components during scanning.
Abstract:
A communication hole inspection device for inspecting a communication hole in a structure, a casting surface being formed on an inner surface of the hole, said communication hole inspection device having: a light-emitting body that is arranged in a portion of the communication hole and emits a beam of light; a light-receiving body that is arranged in a different portion of the communication hole and receives the light beam from the light-emitting body; a rotation mechanism for changing the rotation angle of the light-emitting body and thereby changing the light beam received by the light-receiving body; and a determination unit for determining the open state of the communication hole at least on the basis of based on the light beam received by the light-receiving body when the rotation angle of the light-emitting body is set at a first angle, and at a second angle different from the first angle.
Abstract:
A positioning device for positioning a stage relative to a tool mounted on a carrier device includes two intersecting linear axes disposed one above the other for pre-positioning the stage. A first magnetic levitation unit is configured to support the stage on one of the linear axes, the stage being actively movable for fine positioning in six degrees of freedom. A measuring head and first and second 6-DOF encoders are configured to determine a position of the stage relative to the carrier device. The measuring head is mounted on the other linear axis. The first 6-DOF encoder is disposed between the carrier device and the measuring head and the second 6-DOF encoder is disposed between the measuring head and the stage. A second magnetic levitation unit disposed on the other linear axis is configured to actively move the measuring head in the six degrees of freedom.
Abstract:
Provided is a method for removing character background in a color image that obtains an image for printing evaluation by removing a background design of a character from the color image of a printed object on which the character has been printed. The method includes separating a color input image into a character part and a background part, calculating a discriminant function for separating pixels of the character part and pixels of the background part based on pixel values, and generating a background-removed image by removing the background part from the input image by using the discriminant function. Moreover, an installation adjustment method of a line camera including adjusting, based on a signal acquired by capturing an installation adjustment chart fixed to the inspection drum, an installation position of the line camera that acquires an image of a large-size printed object arranged on an inspection drum, is executed by using an installation adjustment chart wherein a plurality of patterns formed by white background and black vertical lines are arranged by shifting in a vertical direction so that the vertical lines continue horizontally only in a predetermined rectangular region that is elongated in a scan line direction of the line camera.
Abstract:
A system for inspecting surfaces of rotor blades for a surface characteristic. The system may include an assembly having a movable arm and, mounted on the movable arm, a scanner. A row of rotor blades may be positioned near the assembly for inspection. The row of rotor blades may include a plurality of the rotor blades circumferentially spaced about a center axis. The row of rotor blades and the assembly may be moved relative to the other so as to index the row of rotor blades relative to the assembly.
Abstract:
The invention relates to an apparatus comprising: a measuring head (10) having a slot (18) for receiving a measurement cell (26) and means (28) for emitting electromagnetic radiation, and means (32, 36) for detecting radiation from said emission means (28) after it has passed through the measurement cell (26); means (16) for translatably driving and means (12, 14) for translatably guiding, allowing the substantially vertical longitudinal movement of the measurement head (10); at least two recesses (44) each intended for receiving a measurement cell (26) and arranged one above the other in a longitudinal direction, the recesses (44) as well as the driving means (16) and the guiding means (12, 14) being configured such that during the translational movement of the measurement head (10) along the nominal travel thereof each recess is placed inside the slot (18) of the measurement head (10).
Abstract:
Provided is a method for removing character background in a color image that obtains an image for printing evaluation by removing a background design of a character from the color image of a printed object on which the character has been printed. The method includes separating a color input image into a character part and a background part, calculating a discriminant function for separating pixels of the character part and pixels of the background part based on pixel values, and generating a background-removed image by removing the background part from the input image by using the discriminant function. Moreover, an installation adjustment method of a line camera including adjusting, based on a signal acquired by capturing an installation adjustment chart fixed to the inspection drum, an installation position of the line camera that acquires an image of a large-size printed object arranged on an inspection drum, is executed by using an installation adjustment chart wherein a plurality of patterns formed by white background and black vertical lines are arranged by shifting in a vertical direction so that the vertical lines continue horizontally only in a predetermined rectangular region that is elongated in a scan line direction of the line camera.
Abstract:
The device has an apparatus for rotatably holding and positioning at least one stent-like object and a unit for illuminating at least inner and outer surfaces thereof, including at least a wide field epi illumination device and a diffuse back illumination device for simultaneously illuminating the stent-like object. The illumination unit may further include diffuse side illumination device for inspecting side surfaces of the stent-like object. An apparatus for acquiring images of the stent-like object including at least one microscope objective lens and at least one camera is also provided.
Abstract:
The present invention relates to a method for measuring the near-field signal of a sample in a scattering type near-field microscope and to a device for conducting said method.