Abstract:
A display substrate and a display device including the display substrate are provided. The display substrate includes an alignment mark in an alignment region of the display substrate; and a blocking structure in a preset region around the alignment mark, wherein the blocking structure is arranged to block residual particles carried by a rubbing roller during rubbing.
Abstract:
A display device includes: a pixel electrode formed on an insulating surface; a bank that covers an edge of the pixel electrode and at the same time has an opening in which an upper surface of the pixel electrode is not covered by the bank; an organic layer that covers the opening and includes a light emitting layer; an opposing electrode that is formed on the organic layer and the bank; a cap layer that is formed on the opposing electrode; and a hygroscopic layer that contains a hygroscopic agent and that is formed on the opposing electrode in a region that overlaps with the bank but does not overlap with the opening in a planar view from a display surface side.
Abstract:
A display panel, a manufacturing method thereof, a display device and a mould are disclosed. The display panel includes a first substrate and a second substrate disposed opposite to each other; a sealant disposed in a non-display region between the first substrate and the second substrate; and a protection structure disposed on a side surface of the display panel, wherein a material of forming the protection structure is an insulating material with viscosity; and a height of the protection structure in a direction perpendicular to surfaces of the first substrate and the second substrate is not greater than a thickness of the display panel.
Abstract:
A light-emitting element display device includes: a display area which has an organic insulating layer that is made of an organic insulating material; a peripheral circuit area which is disposed around the display area and which has the organic insulating layer; and a blocking area that is formed between the display area and the peripheral circuit area. The blocking area includes: a first blocking area configured by only one or a plurality of inorganic material layers between an insulating base substrate and an electrode layer which covers the display area and is formed continuously from the display area, and which configures one of two electrodes for allowing the light emitting area to emit the light; and a second blocking area including a plurality of layers configuring the first blocking area, and a light emitting organic layer.
Abstract:
A color filter array panel and a display device including the same are provided. The color filter array panel includes a substrate; a first pixel and a second pixel disposed adjacent to each other; a data line disposed on the substrate and between the first pixel and the second pixel; a first color filter disposed in the first pixel; a second color filter disposed in the second pixel, the first color filter and the second color filter overlap each other to form a color filter overlapped portion overlapping the data line; an inorganic layer disposed on the color filter overlapped portion; an organic layer disposed on the inorganic layer, the first color filter, and the second color filter; and a first pixel electrode disposed in the first pixel; and a second pixel electrode disposed in the second pixel The inorganic layer is disposed between the first pixel electrode and the second pixel electrode.
Abstract:
A display device includes a display substrate including at least one step portion, and a thin film encapsulation layer above the display substrate, the thin film encapsulation layer including a buffer layer configured to reduce a height difference due to the at least one step portion and a barrier layer above the buffer layer, the buffer layer including a plurality of sub-layers and interfaces between the plurality of sub-layers, and the interfaces including a curved surface changing from a concave shape to a convex shape toward a portion overlapping the step portion from an outer portion of the step portion.
Abstract:
Provided is a functional laminated film having a functional layer formed by dispersing functional materials in a binder, in which the functional laminated film can inhibit generation of bubbles in the functional layer, and can prevent the functional material from being deteriorated by water or oxygen. The functional layer is formed by dispersing functional materials in a binder, and the binder is formed by polymerizing monomers. The monomers include 50% by mass or more of monomers X having a molecular weight of 100 to 1,500 with respect to the total mass of the monomers, and the gas barrier performance of a gas barrier film is 0.005 [g/(m2·day)] to 0.8 [g/(m2·day)].
Abstract:
A liquid crystal layer is disposed on a second glass substrate side between a first glass substrate and the second glass substrate, a first insulating film and a second insulating film are formed in this order on a surface of the first glass substrate on the liquid crystal layer side, the outer edge portion of the liquid crystal layer is surrounded by a sealing material, and a plurality of TFTs are insulated from each other by the first insulating film and the second insulating film. A gate insulating film included in the second insulating film is so formed as to have a higher barrier property for gas and/or liquid than the first insulating film, and a groove having a bottom formed with the same material as a part of the material for forming the TFT is formed at a part or the whole of a peripheral edge portion of the second insulating film which is located more inside than a position at which the second insulating film overlaps the sealing material.
Abstract:
To provide a thin liquid crystal display device featuring excellent color reproducibility. The liquid crystal display panel includes: a liquid crystal display panel outputting different colors on a per-pixel basis; and a backlight. The backlight includes: a light source; a light guide; a reflective sheet on a back side of the light guide; and a group of optical sheets including a wavelength converter and disposed between the liquid crystal display panel and the light guide. The wavelength converter has a structure where quantum dots are dispersed in a transparent medium. The wavelength converter is bonded to another optical medium by means of a diffusing adhesive. Nanoparticles for developing Rayleigh scattering are dispersed in the wavelength converter.
Abstract:
To provide an electrochromic device including: a support; a first electrode formed on the support; a second electrode facing the first electrode, where through-holes are formed in the second electrode; an electrochromic layer disposed in a space between the first electrode and the second electrode; a first electrolyte layer disposed in the space between the first electrode and the second electrode; a second electrolyte layer disposed to communicate with the first electrolyte layer through the through-holes; an inorganic protective layer, which is disposed on a surface of the second electrolyte layer not facing the second electrode, and is configured to shield oxygen and water vapor; and an organic protective layer disposed on a surface of the inorganic protective layer that does not face the second electrolyte layer.