Abstract:
An optical switch includes a substrate, a ring resonator formed on the substrate, a first waveguide formed on the substrate in optical coupling with the ring resonator, the first waveguide being configured to guide a WDM signal, an optical detector configured to detect an optical signal component in said ring resonator, a temperature regulator driven in response to an output signal of the optical detector, the temperature regulator being configured to change a temperature of the ring resonator, the ring resonator having a resonant wavelength corresponding to a wavelength of an optical signal component that constitutes the WDM signal, the ring resonator, the optical detector and the temperature regulator constituting together a feedback control system that locks the resonant wavelength of the ring resonator to the wavelength of the optical signal component in the WDM signal.
Abstract:
An optical transmitting apparatus includes: a substrate; optical modulators that are arranged in parallel to one another on the substrate and modulate light; waveguides that are formed on the substrate and guide signal light represented by at least one of modulated light beams obtained by the light being modulated by the plurality of optical modulators and monitor light represented by at least another one of the modulated light beams other than the signal light; lenses that collimate the signal light and the monitor light emitted from the waveguides; and a holding member that causes the signal light and the monitor light to be emitted from the lenses in mutually-different directions, by holding the lenses in such a manner that the optical axis of at least one of the lenses is out of alignment in a predetermined direction with the optical axis of at least one of the waveguides.
Abstract:
An electronic device may have a display with a brightness that is adjusted based on ambient light data from one or more ambient light sensors. An ambient light sensor may include at least one silicon-based photosensor. The silicon-based photosensor may generate a corresponding raw sensor reading. Processing circuitry associated with the ambient light sensor may analyze the raw sensor reading to determine the type of light source that is present by comparing measurements from at least two different photosensors, by determining the color temperature of the light source, and/or by determining the modulation frequency of the light source. A compensation factor may then be selected by referring to a lookup table. The processing circuitry may compute a compensated sensor reading based on the raw sensor reading and the selected compensation factor. The brightness of the display may be adjusted based on the compensated sensor reading computed in this way.
Abstract:
The present invention relates to a display device that measures display characteristics (such as luminance or chromaticity) associated with a display panel. The display device of the present invention has a light sensor (5) provided at a position allowing outgoing light from a screen (1a) of a liquid crystal panel (1), which serves as the display panel, and extraneous light reflected on the screen (1a) to enter the light sensor (5). Since the light sensor (5) is provided at the position, it is possible to measure the characteristics of the display panel and also the characteristics of the extraneous ambient light reflected on the screen. Thus, it is possible to accurately adjust the display characteristics based on the measurement results.
Abstract:
A memory device may include an access transistor, and a memory cell configured to store an item of information. The memory cell may include first and second electrodes configured to have different optoelectronic states corresponding respectively to two values of the item of information, and to switch between the different optoelectronic states based upon a control signal external to the memory cell, the different optoelectronic states being naturally stable in an absence of the control signal. The memory cell may also include a solid electrolyte between the first and second electrodes.
Abstract:
An optical semiconductor device includes a ring waveguide, and a serpentine waveguide configured to be optically connected to the ring waveguide and surround at least a part of the ring waveguide in a serpentine form. In the optical semiconductor device, the serpentine waveguide heats the ring waveguide by absorbing input light propagated from the ring waveguide to the serpentine waveguide.
Abstract:
The present invention provides apparatuses and methods for modulating the transmissivity of electrochromic devices utilizing a controller that provides a continuous potential that may be pulsed to the electrochromic device.
Abstract:
A light deflector for deflecting a propagation direction of laser includes: a first metallic piece and a second metallic piece spaced apart from each other; and a transparent medium and an electronic cooling element disposed between the first metallic piece and the second metallic piece such that each of the transparent medium and the electronic cooling element is in contact with the first metallic piece and the second metallic piece. The electronic cooling element creates a temperature difference between the first metallic piece and the second metallic piece to vary a refractive index of the transparent medium.
Abstract:
The present invention relates to a display device that measures display characteristics (such as luminance or chromaticity) associated with a display panel. The display device of the present invention has a light sensor (5) provided at a position allowing outgoing light from a screen (1a) of a liquid crystal panel (1), which serves as the display panel, and extraneous light reflected on the screen (1a) to enter the light sensor (5). Since the light sensor (5) is provided at the position, it is possible to measure the characteristics of the display panel and also the characteristics of the extraneous ambient light reflected on the screen. Thus, it is possible to accurately adjust the display characteristics based on the measurement results.
Abstract:
A tunable acoustic gradient index of refraction (TAG) lens and system are provided that permit, in one aspect, dynamic selection of the lens output, including dynamic focusing and imaging. The system may include a TAG lens and at least one of a source and a detector of electromagnetic radiation. A controller may be provided in electrical communication with the lens and at least one of the source and detector and may be configured to provide a driving signal to control the index of refraction and to provide a synchronizing signal to time at least one of the source and the detector relative to the driving signal. Thus, the controller is able to specify that the source irradiates the lens (or detector detects the lens output) when a desired refractive index distribution is present within the lens, e.g. when a desired lens output is present.