Abstract:
A concentration measurement device including at least one light source; a measurement cell for containing a fluid to be measured; a splitter for dividing light from the light source into incident light being incident into the measurement cell and non-incident light not being incident into the measurement cell; a transmitted-light detector for detecting transmitted light that is the incident light having passed through the measurement cell; a non-incident light detector for detecting the non-incident light; and an arithmetic part for correcting a detection signal of the transmitted-light detector using a detection signal of the non-incident light detector.
Abstract:
To realize collective measurement of ultrawide-band optical signals which have exceeded an electrical band limit. This photodetection device (100) comprises: a time-delay adjustment means (10) into which is input an optical signal that is a detection object; an optical frequency comb generator (20) that generates an optical frequency comb; a photomixer (30) that photomixes optical signal series which are sequentially output from the time delay adjustment means (10) and which were subjected to time adjustment, and the optical frequency comb signal which is output from the optical frequency comb generator (20); and a photodetector (40) that detects the mixed signal output from the photomixer (30). The time delay adjustment means (10) performs time adjustment on the optical signal series so that each of the time adjusted optical signal series is photomixed with the optical frequency comb at different timings in the photomixer (30).
Abstract:
A system for simultaneous optical pathlength determination and remote chemical sensing of a sample disposed along an optical path. A modulated laser source configured for modulated light emission so that at least one spectral sideband with a sideband frequency is created, the modulated light emission is directed along the optical path and sideband frequency is varied over time. A detector is configured to detect transmitted light along the optical path and generate a detected light intensity signal. A frequency down-converter is configured to receive the detected light emission signal and generate a frequency down-converted light intensity signal. A demodulator is configured to demodulate the frequency of the down-converted light intensity signal and output an instantaneous frequency. A pathlength calculator is configured to determine an optical pathlength to the sample based on the instantaneous frequency. A frequency down-converted light intensity signal is simultaneously output for spectroscopic chemical sensing.
Abstract:
A gas sensing system includes a signal generator including a wavelength tunable laser, the signal generator providing a first periodic signal and a second periodic signal, wherein the first periodic signal comprises a wavelength scanning signal and the second periodic signal comprises a modulation signal; an optical signal absorption path which is wavelength selective, wherein the generated signal covers at least one of the absorbance band; a signal detector that uses lock-in detection to detect a second harmonic of the second periodic signal after absorption, the signal detector further including a local reference generator, a multiplier, and a low pass filter; a local reference includes a first path (ref1) that outputs sinusoidal signal with frequency equals to that of the second signal in signal generator, and a second path (ref2) that outputs sinusoidal signal of two times ref1 frequency; and a local reference generator having a first phase shifter that is configurable from 0 to 2π and a second phase shifter that shifts 90-degree, wherein the first phase shifter is for an alignment of ref1 with the modulation signal and the second phase shifter provides 90-degree shifts for ref2 from ref1, wherein the first and second paths (ref1 and ref2) are selected by a switch, wherein the switch uses the first path during initialization and the second path for normal operation.
Abstract:
A method of an optical detecting device for synchronizing an exposure timing sequence of an image detector with a light emitting timing sequence of a reference light source is disclosed. The method includes capturing a continued image set according to a predetermined period, analyzing intensity variation of the continued image set, and adjusting the exposure timing sequence of an image detector according to the intensity variation, so as to synchronize the exposure timing sequence of the image detector with the light emitting timing sequence of the reference light source.
Abstract:
An apparatus is provided for RF signal discrimination. A master laser of the apparatus is connected to an optical input of an optical phase modulator. The optical phase modulator is configured to receive a plurality of RF signals at an RF input and further configured to receive an output from the master laser at an optical input. A slave laser operating below a lasing threshold is configured to receive a modulated output from the optical phase modulator. An optical filter is configured to receive a mixed signal generated inside the slave laser. A photodetector receives the filtered mixed signal and is configured to recover a RF signal from the plurality of RF signals, where a frequency of a sideband of the recovered RF signal corresponds to a mode of the slave laser.
Abstract:
An electronic device may have a display with a brightness that is adjusted based on ambient light data from one or more ambient light sensors. An ambient light sensor may include at least one silicon-based photosensor. The silicon-based photosensor may generate a corresponding raw sensor reading. Processing circuitry associated with the ambient light sensor may analyze the raw sensor reading to determine the type of light source that is present by comparing measurements from at least two different photosensors, by determining the color temperature of the light source, and/or by determining the modulation frequency of the light source. A compensation factor may then be selected by referring to a lookup table. The processing circuitry may compute a compensated sensor reading based on the raw sensor reading and the selected compensation factor. The brightness of the display may be adjusted based on the compensated sensor reading computed in this way.
Abstract:
A light radiating portion (11a, 11b, 12, 51, 52) radiates light with wavelength λ1 having predetermined absorptivity for an object (16) and light with wavelength λ2 having smaller absorptivity for the object (16) than the wavelength λ1, to a target, so as to scan in 2-dimensional directions. A light receiving portion (17) receives scattered lights reflected by the target based on light with wavelength λ1 and light with wavelength λ2. A measuring portion (18) generates information used for detection of the object (16) at the target, based on difference between the two scattered lights with wavelength λ1 and wavelength λ2 received by the light receiving portion (17). An output portion (53) outputs whether or not the object is present at the target, by 2-dimensional area information, based on scanning by the light radiating portion (11a, 11b, 12, 51, 52) and information generated by the measuring portion (18).
Abstract:
Remote absorption spectroscopy uses coded electromagnetic transmission directed through a medium under investigation to one or more remote receivers. The coded transmission includes at least one wavelength coincident with an absorption band of interest and one wavelength in an off-line band and a predefined relationship between spectral components in and outside the absorption band is controlled. The relationship between spectral components may be evaluated at the receiver to determine whether deviation thereof from the controlled relationship at the transmitter exists at the receiver. The deviation of the received optical signal from the prescribed relationship is processed to indicate the absorption of the radiation in the absorption band.
Abstract:
A spectroscopy method, includes guiding pulse laser light to an optical fiber, which mutually reacts with a sample to be measured of a light absorptance characteristic, outputting ring down pulse light obtained through light absorption of the sample, measuring an absorptance characteristic of the sample based on an attenuation characteristic of the ring down pulse light, and setting the pulse laser light as wide-spectrum laser light, setting the optical fiber as a strong dispersive optical fiber, and increasing a pulse width of the ring down pulse light to measure a wavelength absorptance characteristic based on a ring down attenuation constant of a pulse train with respect to a time sequence corresponding to a wavelength.