Abstract:
A platform, apparatus and method for Internet of Things Implementations for controlling electronic equipment. For example, one embodiment of a system comprises: an Internet of Things (IoT) hub comprising a network interface to couple the IoT hub to an IoT service over a wide area network (WAN), and at least one IoT device communicatively coupled to the IoT hub over a wireless communication channel, the IoT device comprising an infrared (IR) or radio frequency (RF) blaster to control environmental control equipment via IR or RF communication with the environmental control equipment, the IoT device further comprising at least one sensor to measure current environmental conditions capable of being controlled by the environmental control equipment, the IoT device to transmit an indication of the current conditions to the IoT hub over the wireless communication channel; and the IoT hub comprising a remote control code database to store remote control codes usable to control the environmental control equipment, the IoT hub further comprising control logic to generate remote control commands using the remote control codes, the remote control commands selected by the control logic in response to the current environmental conditions measured by the sensor and input from an end user provided via a user device indicating a desired environmental condition, the IoT hub to transmit the commands to the IoT device over the wireless communication channel; the IoT device to responsively transmit the remote control commands to the environmental control equipment to attempt to control the environmental control equipment; wherein the IoT hub is configured to continually or periodically monitor the current environmental conditions measured by the sensor and wherein, if the desired environmental condition is not achieved after a specified period of time, then generate a notification from the IoT hub indicating that the environmental control equipment may not be functioning properly.
Abstract:
A Wi-Fi/radio frequency (RF) converting device includes a Wi-Fi transceiver, a multiplexing converting module, and a RF transceiver. The Wi-Fi transceiver receives a Wi-Fi control signal from a control signal generator. The multiplexing converting module receives the Wi-Fi control signal from the Wi-Fi transceiver and converts the Wi-Fi control signal into a RF control signal. The RF transceiver receives the RF control signal from the multiplexing converting module and sends the RF control signal to a plurality of electric elements. An RF extension device may be provided to share the signal transmission between the electric elements and the Wi-Fi/RF converting device.
Abstract:
A method for retransmission of infrared remote control signals is disclosed, including acquiring key code values of a remote control of a second electrical appliance to be simulated and retransmitted by a first electrical appliance; creating a key code value table of remote control pulse signals of the second electrical appliance according to the key code values, and storing the key code value table in a server; downloading, by the first electrical appliance, the key code value table corresponding to the remote control of the second electrical appliance, from the server via a network; and receiving, by the first electrical appliance, key codes that input from the remote control for remotely controlling the second electrical appliance, converting the received key codes into corresponding remote control pulse signals according to the key code value table, and retransmitting the remote control pulse signals to a signal receiver of the second electrical appliance.
Abstract:
A scalable apparatus and a network environment dynamically changes the light transparency of a single SPD device, a small number of SPD devices or thousands of such SPD devices installed in windows in automobiles, aircraft, trains, marine vehicles, residential homes, commercial buildings and skyscrapers. A scalable apparatus and a network environment dynamically changes the light transparency of a single SPD device or thousands of such SPD devices in the presentation of a multi-media special effects display. Textual messages, graphical images and simulated motion effects are driven. Such scalable apparatus being capable of driving and using several operational parameters of SPD's such as frequency range, AC voltage and temperature so as to provide fine control of SPD characteristics such as switching speed and power consumption.
Abstract:
A system for remotely controlling operation of a vehicle comprises a handheld electronic device, a key, and a base station mounted in the vehicle. The handheld electronic device is bi-directionally and wirelessly communicable with the key, while the key is bi-directionally and wirelessly communicable with the base station. An instruction which can be a vehicle searching instruction is sent to the base station from the handheld electronic device via the key. The base station sends position information of the vehicle to the handheld electronic device via the key upon receiving the instruction for searching the vehicle.
Abstract:
Various embodiments are directed to one or more transcoder devices in communication with an input device such as a remote control device and multiple destination devices in which the transcoder device(s) facilitate communication between the remote control and the various destination devices in the vicinity. The transcoder device(s) can also provide the user with an environmental awareness of conditions and events surrounding the user. Other embodiments are described and claimed.
Abstract:
A content access device and system may allow portable remote devices to be paired with a variety of different devices, allowing remote control through a network connection. Content access devices may expose application program interfaces, allowing incoming network traffic to control operation of the device much in the same way that a local infrared remote would. Routing content commands through an external application server may also yield other benefits, such as allowing more customized selection of information and advertising content to users based on their viewing history.
Abstract:
A device receives a request from a controlling device, such as a remote control, smart phone, or the like, where the request is intended to have one or more target devices perform one or more functional operations. The device responds to the request by applying the optimum methodology to propagate one or more commands to each intended target appliance to cause each intended target appliance to perform the intended one or more functional operations.
Abstract:
Provided is a lighting apparatus and a method for controlling the same using a mobile device. A lighting system may include a mobile terminal, a hub configured to communicate with the mobile terminal, and an LED lamp configured to communicate with the hub. The mobile terminal may be configured to display an image captured or focused using a camera at the mobile terminal. The mobile terminal may transfer to the hub information corresponding to a selection of a region of the image. The hub may provide a wireless signal corresponding to the information received from the mobile terminal for changing a color of light emitted by the LED lamp. The LED lamp may be
Abstract:
An apparatus may include a processor and a device state management module. The device state management module may be operative on the processor to receive a trigger signal from a motion sensor in a remote control, to determine the device state of one or more controlled devices and send state management instructions to be transmitted to the one or more controlled devices. The state management instructions may control a set of initial default operations that comprises altering one or more device states in the one or more controlled devices. The apparatus may further include a memory that is arranged to store the determined device state of one or more controlled devices. Other embodiments are described and claimed.