Abstract:
A system and method for safely managing a machine is provided. The present disclosure may conduct to determine the work condition of machine when a remote instruction is received via a mobile communication system. The received instruction may be carried out only if the machine is in a safe situation.
Abstract:
A system and method of monitoring a region and directly controlling objects in the region via a single interface are provided. The method includes displaying a video data stream on a viewing interface and controlling an object in a region via the viewing interface. The video data stream is associated with a data collection device monitoring the region, and the video data stream includes a representation of at least one object in the region that is displayed on the viewing interface.
Abstract:
An integrated remote control system includes a remote control device for selecting and controlling a plurality of digital devices, each including a bit pattern tag having location information and device information. The remote control device includes a display, a light emitting module for emitting light toward the digital devices, a sensor for recognizing the tags of the digital devices, and a controller for analyzing the tags recognized by the sensor to provide the display information of the digital devices on the display and then controlling a digital device selected from the displayed digital devices.
Abstract:
A sensor-transmitter (20) intended to be fastened to a mobile structure (11, 13, 14) and to transmit a security signal in a home automation installation (10), comprising, in a casing (22, 23): an autonomous power source (36), a vibration sensor (33), a wireless transmitter (35) and a processing logic unit (34) analyzing the signals obtained from the vibration sensor to decide whether to transmit the security signal by the wireless transmitter, which comprises means (27, 32) of detecting the mechanical state of the casing, the sensor-transmitter being: in an operational state when the casing is closed and fastened to the mobile structure, the transmission of a security signal being enabled in this operational state, and in a disabled state otherwise, the transmission of a security signal being prohibited in this disabled state, whereas the transmission of other signals remains possible, or the transmission of a security signal being enabled in this disabled state, the security signal being disabled by a disabling signal.
Abstract:
A site controller adapted to be used in an automated monitoring system for monitoring and controlling a plurality of remote devices via a host computer connected to a first communication network is provided. The site controller is configured for controlling communication with the host computer and a plurality of communication devices that define a second communication network associated with the plurality of remote devices. Briefly described, in one embodiment, the site controller comprises a transceiver configured to communicate with the plurality of communication devices via the second communication network; a network interface device configured to communicate with the host computer via the first communication network; and logic configured to: manage communication with each of the plurality of communication devices, via a first communication protocol, based on one or more communication paths for each of the plurality of communication devices, each communication path comprising one or more communication devices involved in the communication link between the transceiver and each of the plurality of communication devices; and manage communication with the host computer via a second communication protocol.
Abstract:
Disclosed is a trap including a status LED configured to indicate a trap status, a door sensor configured to indicate a door status, and a status button, configured to: 1) wake a micro controller such that the telemetry-enabled trap can be registered with a telemetry system, and 2) cause the status LED to indicate at least the trap status and the door status. Also disclosed is a method for monitoring the trap. The method includes receiving GPS data, monitoring the GPS data for valid positional information, and receiving an event message from a trap tracker module.
Abstract:
A moisture monitoring and control system comprising: 1) a plurality of moisture sensors; 2) one or more local or remote control stations capable of monitoring and controlling each of the individual elements of the moisture monitoring and control system; 3) at least one water control valve capable of turning off the water supply to all or at least one water supply zone and powered by an aerogel capacitor; and 4) a plurality of non-interfering RF communications devices at each of the sensor, control and water control valve locations.
Abstract:
The present embodiments provide methods, apparatuses, and systems that interface with automobile Engine Control Units (ECU). In some embodiments, methods are provided that communicate with an ECU by establishing a wireless communication link with a remote device, coupling with an ECU, pairing the remote device with the ECU, identifying a protocol to communicate with the ECU, and transferring communications between the remote device and the ECU.
Abstract:
A dual source real time clock (RTC) synchronization system and method for implementation within automatic meter reading (AMR) systems that provide system-wide device time synchronization. In one embodiment, a microcontroller-implemented RTC counts elapsed seconds from a pre-determined system timestamp using a low-speed, low-accuracy crystal. A second source is used to compensate for the low-speed, low-accuracy crystal. This second source comprises a high speed clock in one embodiment. This dual source RTC system can synchronize the endpoint device.
Abstract:
Meters are configured using either a program update method or a meter update method. In the program update method, meters associated with a specified configuration program are identified and configured with updated parameters. In the meter update method, a specified set of meters is configured with a specified set of updated configuration parameters. The meter update method enables both time of use and other configuration parameters to be updated. Both methods enable various actions to be performed in conjunction with a meter configuration. Such actions may include, for example, recording a snapshot of current billing data, resetting billing data, and resetting demand data.