Abstract:
A compact and vacuum compatible magnetic-coil driven tiltable stage that is equipped with a high efficiency reflective coating can be employed as a scanner in EUV applications. The drive electronics for the scanner is fully in situ programmable and rapidly switchable.
Abstract:
Systems and methods are disclosed for reducing the influence of plasma generated debris on internal components of an EUV light source. In one aspect, an EUV meteorology monitor is provided which may have a heater to heat an internal multi-layer filtering mirror to a temperature sufficient to remove deposited debris from the mirror. In another aspect, a device is disclosed for removing plasma generated debris from an EUV light source collector mirror having a different debris deposition rate at different zones on the collector mirror. In a particular aspect, an EUV collector mirror system may comprise a source of hydrogen to combine with Li debris to create LiH on a collector surface; and a sputtering system to sputter LiH from the collector surface. In another aspect, an apparatus for etching debris from a surface of a EUV light source collector mirror with a controlled plasma etch rate is disclosed.
Abstract:
A reticle includes an area provided with a conductive metal-based compound coating for electrically grounding the reticle. The reticle is suitable for use with a lithography apparatus whereby the reticle pattern is imaged using extreme ultra violet radiation. One or more conducting pins, held at zero potential, may be pressed against the conductive coating for electrically grounding the reticle either during patterning the reticle by electron beam writing or during use in the lithographic apparatus. The areas coated with the metal-based compounds are wear resistant which reduces the occurrence of particles due to damage caused by mechanical contact between the conducting pins and the conductive coating.
Abstract:
Inventions related to the intra-vision means, designed for production of visually sensed images of the internal structure of an object, in particular, of a biological object, are aimed at higher accuracy of determining the relative density indices of the object's substance in the obtained image together with avoiding complex and expensive engineering; when used for diagnostic purposes in medicine, the dosage of tissues surrounding those that are examined is decreased. X-rays from source 1 is concentrated (for example, using X-ray lens 2) in the zone that includes the current point 4, to which the measurement results are attributed and which is located within the target area 7 of the object 5. Excited in this zone secondary scattered radiation (Compton, fluorescent) is transported (for example, using X-ray lens 3) to one or more detectors 6. By moving the said zone, the target area 7 of object 5 is scanned, and based upon population of the intensity values of the secondary radiation, which are obtained with the help of one or more detectors 6 and which are determined concurrently with coordinates of the current point 6, judgment on the density of the object's substance in this point is made. Density values together with respective coordinate values obtained using sensors 11 are used in the means 12 for data processing and imaging to build up a picture of substance density distribution in the target area of the object.
Abstract:
A collector is described that comprises a laser produced plasma (LPP) extreme ultra violet (EUV) light source and a first optical path from the source to a mirror. The mirror is the first mirror that light emitted from the source and traveling along the first optical path impinges upon. The collector also includes a second optical path from the source to another mirror. The other mirror is the first mirror that light emitted from the source and traveling along the second path impinges upon. The mirror and the other mirror are oriented relative to the source such that light from the source traveling along the first optical path travels in a direction opposite to light traveling from the source along the second optical path. A collector having a discharge extreme ultra violet (EUV) light source is also described.
Abstract:
The metal film of the present invention is a dense film of a single crystal that has very low surface roughness and very good crystal orientation because an arithmetic mean roughness of the surface is not larger than 2 nm and a (111) peak intensity of X-ray diffraction is not less than 20 times the sum of all other peaks. Also the metal oxide film of the present invention is a dense film that includes less oxygen defects and almost no voids therein because a content of a non-oxidized metal is not higher than 1 mole % of a metal component that constitutes the metal oxide and a packing density is 0.98 or higher.
Abstract:
Grazing incidence co-axial and confocal mirrors, used in particular for X-ray telescopes for astronomic observations, having a parabola/hyperbola double-cone truncated-cone structure, with polynomial sections or other geometric configurations, and consisting of an internal reflecting surface (15), in the form of a gold layer, an epoxy resin layer (14) and a supporting mechanical structural element (carrier) (11), formed of a ceramic material having physical-chemical properties improved compared to nickel and obtained according to the process of chemical vapor deposition (CVD) or other fabrication processes.
Abstract:
An X-ray mirror has a silicon carbide substrate having a convex cylindrical surface, and a carbon layer coated on a surface of said substrate to a thickness ranging from 10 nm to 1 .mu.m by evaporation, such as CVD. In the X-ray mirror in which the carbon layer is coated thereon beforehand, changes in the intensity of reflected light, caused by a contaminating carbon layer attached to the surface of the mirror, can be restricted. When such a mirror is used in an X-ray lithographic apparatus, the number of times the intensity of X-rays is measured or corrected or the mirror is cleaned can be greatly reduced.
Abstract:
Disclosed is a device for adjusting the curvature of a mirror comprising: a base block; a pair of rotating blocks which are connected to the base block by one or more elastic bodies, respectively, and rotate around the connection portions between the base block and the elastic bodies or elastically return to through the application or release of external forces; a pair of support blocks which are disposed at the pair of rotating blocks, respectively, to support both ends of the mirror and apply bending moments to the both ends of the mirror by the rotation of the pair of rotating blocks; and a driving part for rotating the pair of rotating blocks.
Abstract:
An intensifying screen for exposing X-ray film includes a screen support backing, a luminescent layer having a luminescent material that emits light in the presence of X-rays, and a reflective layer disposed between the luminescent layer and the screen support backing, the reflective layer including a plurality of micro-prisms that reflect light emitted by the luminescent material. An X-ray film cassette includes at least one intensifying screen and a housing surrounding the at least one intensifying screen.