Abstract:
The invention solves charge nonuniformity of a specimen surface resulting from emission variation of a carbon nanotube electron source and individual difference of emission characteristics. During charge control processing, charge of the specimen surface is measured in real time. As means for solving charge nonuniformity resulting from nonuniformity of electron illumination density, electrons illuminating the specimen and the specimen are moved relatively to average electron illumination density. Moreover, an absorption current flowing into the specimen and the numbers of secondary electrons emitted from the specimen and of backscattered electrons are measured as means for monitoring charge of the specimen surface in real time.
Abstract:
The present invention provides a mirror electron projection (MPJ) type (SEPJ type included) scanning electron beam apparatus that is capable of performing condition setup, and a method and apparatus for inspecting pattern defects with the scanning electron beam apparatus. A mirror electron projection type defect inspection apparatus, which comprises a charging device for emitting a charging electron beam, electron beam irradiation means for shedding a mirror electron projection electron beam onto an inspection region near which an electrical potential distribution is formed, detection means for detecting secondary electrons or reflected electrons generated from a surface and proximity of the specimen, and defect detection means for detecting a defect by processing a mirror image signal that is detected by the detection means, includes irradiation condition optimization means for optimizing charging electron beam irradiation conditions.
Abstract:
A surface-potential distribution measuring apparatus includes an electron gun, an electron-beam optical system, an electron-emission panel, a detector, and a control system. The electron-beam optical system is located between the electron gun and a sample, and focuses a beam of electrons emitted from the electron gun to the surface of the sample. The electron-emission panel is located near the sample to be collided with at least part of the electrons via the sample, and emits secondary electrons corresponding to the number of collided electrons. The detector detects at least part of the secondary electrons. The control system obtains potential distribution on the surface of the sample based on a detection result obtained by the detector.
Abstract:
A system and method for characterizing and charging a sample. The system includes a vacuum chamber, a first apparatus in the vacuum chamber and configured to characterize a sample, and a second apparatus in the vacuum chamber and configured to charge the sample. The second apparatus includes an electron gun configured to provide an electron beam to the sample and including an emission cathode biased to a first voltage relative to a reference voltage, a sample holder configured to support the sample, and a mesh located between the electron gun and the sample holder. Additionally, the second apparatus includes a first voltage supply configured to bias the mesh to a second voltage relative to the sample holder, and a second voltage supply configured to bias the sample holder to a third voltage relative to the reference voltage.
Abstract:
One embodiment described relates to a method of electron beam imaging of a target area of a substrate. An electron beam column is configured for charge-control pre-scanning using a primary electron beam. A pre-scan is performed over the target area. The electron beam column is re-configured for imaging using the primary electron beam. An imaging scan is then performed over the target area. Other embodiments are also described.
Abstract:
A system and method for characterizing and charging a sample. The system includes a vacuum chamber, a first apparatus in the vacuum chamber and configured to characterize a sample, and a second apparatus in the vacuum chamber and configured to charge the sample. The second apparatus includes an electron gun configured to provide an electron beam to the sample and including an emission cathode biased to a first voltage relative to a reference voltage, a sample holder configured to support the sample, and a mesh located between the electron gun and the sample holder. Additionally, the second apparatus includes a first voltage supply configured to bias the mesh to a second voltage relative to the sample holder, and a second voltage supply configured to bias the sample holder to a third voltage relative to the reference voltage.
Abstract:
A neutral beam ionizing apparatus for electron impact ionization of a substantially cylindrical neutral beam. The apparatus includes an electron source, and a circularly cylindrical ionizing region that is substantially free of magnetic fields. In one embodiment of the invention, the beam is a gas cluster beam, and the electron source includes a heated filament for emitting thermions, the filament including one or more direction reversals shaped to produce self-nulling magnetic fields so as to minimize the magnetic field due to filament heating current. In another embodiment of the invention, a neutral beam ionizing apparatus for electron impact ionization of a substantially cylindrical neutral beam includes at least one electron source, and an elliptically cylindrical ionizing region. In one embodiment, the elliptically cylindrical ionizing region includes a pair of co-focal elliptically cylindrical electrodes biased so as to cause electrons emitted from the at least one electron source to orbit repeatedly through the axis of the beam to be ionized.
Abstract:
A method of capturing scanning electron microscope (SEM) images of a sample, such as a photo mask, and a scanning electron microscope (SEM) apparatus capable of executing the method are provided. The method of capturing SEM images includes steps of intentionally electrically charging the surface of the sample, and subsequently scanning the charged surface of the sample with a primary electron beam. An ionizer or an electron gun may be used to charge the surface of the sample. Once the surface is charged to a predetermined level, the charges (ions or electrons) distribute themselves uniformly on the surface of the sample. Thus, the primary electrons will not be deflected by electrical attraction or repulsion as the electrons near the surface of the sample. Accordingly, the present invention facilitates the initial focusing of the primary electron beam on a desired spot on the sample, and reduces the number of occurrences and durations of pattern shifting phenomena.
Abstract:
Methods of inspecting a microstructure comprise: applying charged particles to the wafer to negatively charge up the wafer over a region having contact or via holes, scanning a charged-particle beam over the region while detecting secondary particles so as to produce a detector signal, determining from the detector signal an apparent dimension of a contact hole, and comparing the apparent dimension of the contact hole with reference information to identify a defect. The reference information can be a conventional voltage-contrast image or can be design data indicating expected physical size of the contact hole and expected electrical connectivity of material within or beneath the contact hole. The wafer can be charged up by directing a flood of electrons toward a surface of the wafer and/or by controlling potential of an energy filter so as to direct secondary electrons back to the wafer while directing a charged-particle beam at the wafer. Other methods of inspecting a microstructure comprise charging up a microstructure, interrogating the microstructure with a charged-particle beam to obtain apparent dimensional information for a feature of the microstructure, and comparing the apparent dimensional information with reference information about the microstructure to identify a defect. Apparatus for inspecting semiconductor wafers and other microstructures are also disclosed, as are computer program products comprising a computer usable media having computer-readable program code embodied therein for controlling a charged-particle-beam system for inspecting a microstructure.
Abstract:
Disclosed herein is an apparatus comprising: a source of charged particles configured to emit a beam of charged particles along a primary beam axis of the apparatus; a condenser lens configured to cause the beam to concentrate around the primary beam axis; an aperture; a first multi-pole lens; a second multi-pole lens; wherein the first multi-pole lens is downstream with respect to the condenser lens and upstream with respect to the second multi-pole lens; wherein the second multi-pole lens is downstream with respect to the first multi-pole lens and upstream with respect to the aperture.