Abstract:
A cathode substrate 10 is heated to 400 to 600° C. in the atmosphere of hydrocarbon gas such as methane and the gas is allowed to react with the surface of the cathode substrate 10 by a thermal CVD method. Thus, an electron emission source in which graphite nano-fibers 11 are allowed to grow in a gaseous-phase on the surface of the cathode substrate 10 by using nickel or iron existing on the surface of the cathode substrate 10 as a nucleus is held between upper and lower end hats 12 to form a cathode part 13.
Abstract:
A high-power relativistic magnetron wherein the cathode geometry is shaped to form a DC electric field that has a non-negligible azimuthal component causing preferential selection of the pi mode at startup (suppression of mode competition), a significant increase in radiated power output and time integrated efficiency when compared to standard relativistic magnetron cathode designs.
Abstract:
A pulse magnetron includes a cylindrical shell anode, a cathode provided at the center of the anode having a number of vanes mounted radially on an inner wall of the cylindrical anode shell, and a pair of pole pieces provided for applying a magnetic field to an interaction space where the outer side of the cathode is opposed to inner ends of the vanes. The anode and the cathode are arranged to satisfy at least either (i) increasing the radius of the inscribed circle defined by the inner ends of the vanes or (ii) decreasing the radius of the cathode surface as the magnetic flux density along the axial direction of the cathode at both ends of the inner end of the height of the vanes.
Abstract:
A magnetron cathode assembly which realizes stopping of turn of an external terminal inserted into a stem insulator without increasing a manufacturing cost. A leading end of a base end axial portion of an external terminal has a non-circular section by providing a flat surface in at least one position on its peripheral surface, and a straight stop edge that fits to the flat surface thereby to carry out stopping of turn of the external terminal is provided for a terminal fitting hole of a sealing metal plate into which the leading end of this external terminal is fitted.
Abstract:
A cathode substrate 10 is heated to 400 to 600° C. in the atmosphere of hydrocarbon gas such as methane and the gas is allowed to react with the surface of the cathode substrate 10 by a thermal CVD method. Thus, an electron emission source in which graphite nano-fibers 11 are allowed to grow in a gaseous-phase on the surface of the cathode substrate 10 by using nickel or iron existing on the surface of the cathode substrate 10 as a nucleus is held between upper and lower end hats 12 to form a cathode part 13.
Abstract:
The object of the present invention is to provide a pulse magnetron which can inhibit unwanted oscillation at an operation point lower than the rated level in the rise or decay of a pulse, attenuate spurious radiation at lower frequencies than the fundamental oscillation frequency, and produce an improved symmetrical profile of output spectrum. The pulse magnetron of the present invention includes an anode, a cathode provided at the center of the anode, and a pair of pole pieces provided for applying a magnetic field to an interaction space where the outer side of the cathode is opposed to the inner ends of the vanes. The radius ra of the inscribed circle defined by the inner ends of the vanes and the radius rc of the cathode surface satisfy the operation theory equation for the minimum value of the magnetic flux density along the axial direction of the cathode at both ends of the inner end of the height of the vanes in the interaction space. The anode and the cathode are arranged to satisfy at least either (i) increasing the radius of the inscribed circle defined by the inner ends of the vanes or (ii) decreasing the radius of the cathode surface as the magnetic flux density along the axial direction of the cathode at both ends of the inner end of the height of the vanes.
Abstract:
The present invention relates to electronics and particularly to field emitters used in M-type microwave devices. The design of a multi-layer field emitter is proposed which has at least one operating film and supporting films, providing mechanical strength and preventing penetration of corrosion materials into the operating film at high operating temperatures. The supporting films could be produced from the same material or material with linear expansion coefficients equal or close to that of the operating film material. Built-in mechanical stress can cause not only deformation but also a break of the film during its exploitation in a wide range of temperatures. In the inventive structure the thermal stresses in the operating film during an emission from its surface are lower due to good thermal contact with supporting films.
Abstract:
An improved low power pulsed anode magnetron is provided having a cylindrical cathode centrally disposed within a plurality of radial anode vanes. An interaction region is provided between the surface of the cathode and the anode vane tips. A ratio of the anode-to-cathode space over the center-to-center distance between adjacent vane tips is within a range between 0.95 and 1.05. The cathode is joined to a magnetic polepiece assembly which channels magnetic flux to the interaction region. Both the cathode and the polepiece are mechanically adjustable from external to the magnetron to reposition the cathode and polepiece with respect to the anode vanes. The cathode surface is formed from an active nickel alloy which is cleaned by a chemical process followed by a high temperature and vacuum firing. An emissive surface is applied over the cleaned cathode surface. The output spectrum of the magnetron is calibrated by applying a sequential pulsed input of increasing amplitude, and adjusting the relative cathode-anode position until the frequency spectrum remains constant.
Abstract:
An improved low power pulsed anode magnetron is provided having a cylindrical cathode centrally disposed within a plurality of radial anode vanes. An interaction region is provided between the surface of the cathode and the anode vane tips. A ratio of the anode-to-cathode space over the center-to-center distance between adjacent vane tips is within a range between 0.95 and 1.05. The cathode is joined to a magnetic polepiece assembly which channels magnetic flux to the interaction region. Both the cathode and the polepiece are mechanically adjustable from external to the magnetron to reposition the cathode and polepiece with respect to the anode vanes. The cathode surface is formed from an active nickel alloy which is cleaned by a chemical process followed by a high temperature and vacuum firing. An emissive surface is applied over the cleaned cathode surface. The output spectrum of the magnetron is calibrated by applying a sequential pulsed input of increasing amplitude, and adjusting the relative cathode-anode position until the frequency spectrum remains constant.
Abstract:
In a magnetron comprising a cathode electrode, an anode electrode surrounding the cathode electrode and end shields mounted on the opposite ends of the cathode electrode, the inner surfaces of one or both end shields are provided with thin layers of a powder of tungsten, molybdenum, or alloys thereof.