Abstract:
The present invention relates to a gas discharge tube or the like having a structure for enabling the maintenance of discharge startability and the prevention of the shortening of the life of an anode section and for increasing the amount of visible light from a visible light source passing through a discharge path restricting section. The gas discharge tube comprises a sealed vessel in which gas is encapsulated. A cathode section and anode section for generating discharge are arranged in the sealed vessel. Furthermore, a discharge path restricting section for narrowing a discharge path is arranged between the cathode section and the anode section. In particular, an opening portion is formed in the anode section, and the cross section of the opening portion has a non-circular shape where the maximum opening width in a first direction is different from that in a second direction orthogonal to the first direction. Thus, the amount of the visible light passing through the opening portion of the anode section in the gas discharge tube from the visible light source can be increased by making the maximum opening width in one direction of the first and second directions longer than that in the other direction. The maintenance of the discharge startability and the prevention of the shortening of the life of the anode section can be attained by making the maximum opening width in the other direction shorter than that in one direction.
Abstract:
An indirectly heated cathode C1 comprises a heater 1, a double coil 2, a mesh member 3, and a metal oxide 10. An electrical insulating layer 4 is formed on the surface of heater 1. Heater 1 is inserted into and positioned at the inner side of double coil 2. Mesh member 3 is disposed along the length direction of double coil 2 at the outer side of double coil 2. Double coil 2 is grounded by being connected to the ground terminal of heater 1 via a lead rod 7. Metal oxide 10 is held by double coil 2 and disposed to be in contact with mesh member 3. Metal oxide 10 and mesh member 3 are exposed to the outer side of indirectly heated electrode C1 so that the surface of metal oxide 10 and the surface of mesh member 3 make up a discharge surface and mesh member 3 is in contact with the surface part of metal oxide 10.
Abstract:
An anode electrode 10 is composed of a straight elongated cylindrical body, and the outer periphery of the cylindrical body is covered with a dielectric body 12. Further, a cathode portion 20 has a straight semicylindrical shape. A cathode 25 surrounds the anode, and the anode and cathode are disposed parallel to each other in the longitudinal direction. Further, the cathode comprises a cathode wire group 16. Both ends of the cathode wire group are fixed to both ends 20D in the longitudinal direction of the semicylindrical body constituting the cathode portion, so that a plurality of wires become parallel to each other. A reflective surface for reflecting irradiation in a vacuum ultraviolet region is formed on the surface 20S of the cathode portion at the side facing the anode.
Abstract:
An indirectly heated cathode C1 comprises a heater 1, a double coil 2, a mesh member 3, and a metal oxide 10. An electrical insulating layer 4 is formed on the surface of heater 1. Heater 1 is inserted into and positioned at the inner side of double coil 2. Mesh member 3 is disposed along the length direction of double coil 2 at the outer side of double coil 2. Double coil 2 is grounded by being connected to the ground terminal of heater 1 via a lead rod 7. Metal oxide 10 is held by double coil 2 and disposed to be in contact with mesh member 3. Metal oxide 10 and mesh member 3 are exposed to the outer side of indirectly heated electrode C1 so that the surface of metal oxide 10 and the surface of mesh member 3 make up a discharge surface and mesh member 3 is in contact with the surface part of metal oxide 10.
Abstract:
In a lamp and method for fabricating the same, an outer surface of the lamp tube is dipped into a conductive transparent solution for forming an electrode by a predetermined depth, and then the lamp tube is pulled out from the solution. Accordingly, an electrode having different profiles is formed on the outer surface of the tube body. Also, the outer surface of the lamp tube is dipped into the solution by an acute angle, and is pulled out from the solution. Therefore, a problem of a nonuniform brightness between lamps is not generated, and light utilization efficiency is much enhanced even when using a plurality of lamp in parallel connected to a power supply.
Abstract:
A method of making a unitized tungsten electrode which exhibits superior mechanical and electrical properties which includes providing a length of cylindrical cut stock having a predetermined diameter and length. The stock is ground to form a rough unfinished electrode having an enlarged tip or nose portion at one end integrally connected to an elongated shank section. The unfinished electrode is treated by exposure to a chemical etchant for a time sufficient to form a finished electrode characterized by a smooth nose and shank surface and rounded undercut and ends. The invention includes the electrode formed by the described process.
Abstract:
A method of making a unitized tungsten electrode which exhibits superior mechanical and electrical properties which includes providing a length of cylindrical cut stock having a predetermined diameter and length. The stock is ground to form a rough unfinished electrode having an enlarged tip or nose portion at one end integrally connected to an elongated shank section. The unfinished electrode is treated by exposure to a chemical etchant for a time sufficient to form a finished electrode characterized by a smooth nose and shank surface and rounded undercut and ends. The invention includes the electrode formed by the described process.
Abstract:
A discharge lamp having an enclosure in which a discharging gas is sealed, and a pair of electron-emitting members sealed in the enclosure and between which a voltage is applied. Each electron-emitting member has, at its surface, a plurality of conductive micro-tips and an electron-emitting film which supports the plurality of conductive micro-tips and is made of a material whose secondary emission efficiency is higher than that of the material for the conductive micro-tips with respect to the discharging gas.
Abstract:
A gas discharge lamp, in particular a low-pressure gas discharge lamp, comprising an electrode including a carrier of an electrode metal and a first electrode coating of an electron-emitting material, which material comprises a metal powder preparation of a powder of a reducing metal selected from the group formed by aluminum, silicon, titanium, zirconium, hafnium, tantalum, molybdenum, tungsten and the alloys thereof, which metal powder preparation is provided with a powder coating containing a noble metal selected from the group formed by rhenium, cobalt, nickel, ruthenium, palladium, rhodium, iridium and platinum, and the alloys thereof, and said material comprising at least one alkaline earth metal oxide selected from the group formed by calcium oxide, strontium oxide and barium oxide, is characterized by a uniform emission current and a long service life.
Abstract:
A gas discharge tube includes a plurality of light-emitting portions that are provided outside of the tube and comprise at least two discharge electrodes, and an electron emission film formed on the entire inner wall of the tube for improving discharge characteristics.