Abstract:
A method for manufacturing a cold cathode fluorescent lamp (CCFL) is disclosed. The CCFL includes a light transmitting shell and an electrode disposed at one end of the light transmitting shell. The method includes the steps of exhausting a gas existing inside the light transmitting shell via a vent of the light transmitting shell, charging at least one inert gas into the light transmitting shell, and removing an amalgam, which is initially disposed in a gas adjusting instrument, into a temporal region of the light transmitting shell after the step of exhausting.
Abstract:
A fluorescent lamp (10) includes a discharge tube which is made of transmissive material, has a phosphor layer formed on the inner surface of the discharge tube and is filled with a discharge gas, a first internal electrode (101a) provided at one end of the discharge tube (102) for applying a rectangular alternating voltage of high frequency, a second internal electrode (101b) provided at the opposite end the discharge tube (102) to the first internal electrode (101a), an external electrode (103) provided along the longitudinal direction of the discharge tube (102). A capacitive element (104) for discharging internal charge is electrically connected to the second internal electrode (101b) outside the discharge tube (102).
Abstract:
A monochromic, multi-color and full-color cold cathode fluorescent display (CFD), includes some shaped white or multi-color or red, green blue color cold cathode fluorescent lamps (CCFL), reflector, base plate, temperature control means, luminance and contrast enhancement face plate, shades and its driving electronics. CFD is a large screen display device which has high luminance, high efficiency, long lifetime, high contrast and excellent color. CFD can be used for both outdoor and indoor applications even at direct sunlight, to display a character, or graphic and video image.
Abstract:
The represent invention relates to a method of backlighting a liquid crystal display which includes heating a fluorescent lamp with an external heating element which does not contact the lamp. The heating step may be accomplished by passing a current through a resistive material. The resistive material may be coated on to a surface. The present invention also relates to a backlighting system with a fluorescent lamp and an external heating element which does not contact the fluorescent lamp. The heating element may be a resistive material coated on a substrate. The present invention also relates to a portable display device element includes a liquid crystal display, a fluorescent lamp to act as a backlight, a heating element which does not contact the fluorescent lamp and optionally including reflectors, diffusers, and optical enhancement films. The heating element may be a resistive material coated on a substrate.
Abstract:
A cold cathode fluorescent flat lamp comprising a first plate, a second plate, a fluorescent substance, a discharge gas and a plurality of electrodes is provided. The first plate has a plurality of grooves. The second plate is disposed on the first plate on which the grooves form airtight chambers. The fluorescent substance is disposed on the inner wall of the airtight chambers; the discharge gas is disposed in the airtight chambers; and the electrodes are disposed on both sides of various airtight chambers. Therefore, by disposing the grooves on the inner surface of the first plate, the second plate can dispose on the first plate directly. Furthermore, the second plate disposing on the first plate directly can enhance the strength of the cold cathode fluorescent flat lamp without using rods and spacers.
Abstract:
The represent invention relates to a method of backlighting a liquid crystal display which includes heating a fluorescent lamp with an external heating element which does not contact the lamp. The heating step may be accomplished by passing a current through a resistive material. The resistive material may be coated on to a surface. The present invention also relates to a backlighting system with a fluorescent lamp and an external heating element which does not contact the fluorescent lamp. The heating element may be a resistive material coated on a substrate. The present invention also relates to a portable display device element includes a liquid crystal display, a fluorescent lamp to act as a backlight, a heating element which does not contact the fluorescent lamp and optionally including reflectors, diffusers, and optical enhancement films. The heating element may be a resistive material coated on a substrate.
Abstract:
Disclosed is a cold cathode type fluorescent lamp operated with a low voltage while it has a greatly increased life. The cold cathode type fluorescent lamp has a fluorescent tube including a fluorescent material formed thereon. A discharge gas includes vapors of mercury and an inert gas by a ratio of approximately 1:0.6 to 1:2.0. A first base and a second base are installed at both end portions of the fluorescent tube. A first electrode is disposed in the fluorescent tube, and a second electrode is disposed in the fluorescent tube. A first electron-emitting member is fixed on the first electrode, and a second electron-emitting member is fixed on the second electrode. The cold cathode type fluorescent lamp can instantaneously operate without preheating the electrodes, and cold cathode type fluorescent lamp can have greatly increased life because the cold cathode type fluorescent lamp can continuously operate when the electron-emitting members are broken. Also, the cold cathode type fluorescent lamp can be employed for various purposes like a traffic lamp or a street lamp because the cold cathode type fluorescent lamp has the sufficient luminous intensity.
Abstract:
A sealing electrode for discharge lamp having electrically conductive cup, and an emitter pellet is disclosed. The cup seals a passage into the discharge lamp, and additionally supports the electrode pellet or tip for the discharge. The design enables the emitter, electrode and seal structure to be made separately off line, while also enabling the emitter to be protected from contaminants during subsequent assembly.
Abstract:
A capacitively coupled fluorescent lamp package having a capacitively coupled fluorescent lamp; an inverter circuit for driving the lamp; and supply nodes for receiving a supply voltage is disclosed. The capacitively coupled fluorescent lamp package includes a resonant circuit lamp driving scheme for driving the capacitively coupled fluorescent lamp. The driving scheme reduces parasitic capacitance leakage current; compensates the reactive power using the secondary side leakage inductance in order to have the resonant frequency approximately equal the inverter circuit operating frequency for current source-type driven circuits; and forms a series resonant sub-circuit with the embedded ballasting capacitor and the secondary side leakage inductance for voltage source-type driven circuits, such that the resonant frequency is substantially less than the inverter circuit operating frequency and that the lamp current is properly shaped along with current ballasting.
Abstract:
A capacitively coupled fluorescent lamp package having a capacitively coupled fluorescent lamp; an inverter circuit for driving the lamp; and supply nodes for receiving a supply voltage is disclosed. The capacitively coupled fluorescent lamp package includes a resonant circuit lamp driving scheme for driving the capacitively coupled fluorescent lamp. The driving scheme reduces parasitic capacitance leakage current; compensates the reactive power using the secondary side leakage inductance in order to have the resonant frequency approximately equal the inverter circuit operating frequency for current source-type driven circuits; and forms a series resonant sub-circuit with the embedded ballasting capacitor and the secondary side leakage inductance for voltage source-type driven circuits, such that the resonant frequency is substantially less than the inverter circuit operating frequency and that the lamp current is properly shaped along with current ballasting.