Abstract:
In an image forming apparatus such as a digital copying machine using a multi-beam optical system, a printing area can be set in the unit equal to or smaller than a clock for image formation by use of a delay pulse for each light beam and the exposure position in the light beam scanning direction (main scanning direction) is always precisely controlled by selecting an optimum set value while the actual light beam position is being checked by use of a sensor.
Abstract:
A laser scanner is adapted to cause a laser beam to scan in the main-scanning direction by deflecting the laser beam by means of a deflecting optical system. A horizontal synchronizing signal is obtained by detecting the laser beam by means of a photodetector. Forced emission of laser beam is started after a predetermined time period since the detection of the laser beam, which predetermined time period is variable as a function of the rotary speed of the deflector section. With this arrangement, a horizontal synchronizing signal can be reliably detected if the rotary speed of the deflecting operation system fluctuates.
Abstract:
A method for determining a scan line error for a scan line, wherein the scan line is produced from one of a plurality of facets of a rotating reflector of a scanning device. The method comprises the steps of (a) determining a difference between a time of an occurrence of a point in a scan line produced from a first facet and a time of an occurrence of a point in a scan line produced from a second facet, and (b) determining from the difference, a scan line error for the scan line produced from the first facet.
Abstract:
An image recording device, wherein deviation of an image-recording start position, which results from a difference in the amount of expansion and contraction based on temperature changes between a printing plate precursor, a rotating support, a mechanism for moving a recording head, and the like, is corrected so that an image can be recorded at a proper position. Temperature 1 near the rotating support is obtained by a first temperature sensor, and temperature 2 near the mechanism is obtained by a second temperature sensor. Then, an amount for correcting an image-recording start position is obtained from a correction table based on the temperatures 1 and 2 and on a size of the printing plate precursor, and the number of drive pulses for correction corresponding to the obtained amount of correction is outputted to a drive motor of the mechanism.
Abstract:
An optical scanning system for a printer. The optical scanning system includes: an optical scanning unit installed to scan light onto a circulating photoreceptor web; a photodetector installed for receiving scanning light emitted from the optical scanning unit; a defective edge area detector for comparing pulse signals output in sequence from the photodetector to determine whether the edge of the photoreceptor web has a defect, and outputting an edge defect signal if a defective area is detected; an estimated pulse width calculator for outputting a predetermined estimated pulse width, and updating the estimated pulse width for the next line image scanning using the signal from the defective edge area detector, the predetermined estimated pulse width, and the pulse signal from the photodetector; a line scanning synchronous signal generator for generating a line scanning synchronous signal in synchronicity with the predetermined estimated pulse width; and an optical scanning unit driver for driving the optical scanning unit such that the optical scanning unit emits image information light onto the photoreceptor web synchronized with the line scanning synchronous signal. By the optical scanning system and a method for adjusting the start point of image scanning, errors in writing an image can be suppressed, which are caused by defects at the edge of the photoreceptor web.
Abstract:
An image reading apparatus comprises an image reading section which optically reads one line of an image on a paper at a specific time interval and inputs the acquired image data to an image signal processing section which converts the image data into a binary image data. An amount of movement detection section is provided which outputs a signal to an image data generation section when the image reading section moves by one line. When such a signal is received more than one time during one time interval, the image data generation section generates a binary image data corresponding to the number of lines whose data is not available from the binary image data for a line acquired during that time interval.
Abstract:
The invention provides an image forming method and apparatus capable of forming an image with a desired shape at a correct position on a recording medium having expansion and contraction properties. Boundary lines formed on the recording medium being conveyed are detected by a sensor. Distortion of the recording medium is evaluated on the basis of the detected boundary lines. Image data is corrected in accordance with the result of the evaluation and an image is formed in accordance with the corrected image data. In the above process, image data within the respective areas surrounded by the boundary lines is deformed such that the image is printed at a correct location even when the recording medium has distortion due to expansion/contraction.
Abstract:
An inexpensive image reading apparatus which does not need a delay buffer and which permits image inputting with an image sensor array with reduced color dislocation on character edge etc. Color images are inputted in this process: Line reading circuit 102 reads three color data simultaneously. On the basis of the top and end points of a line of green data obtained by encoders and scanned position detection circuit, offset size deriving circuit 107 works out the top and end scanned positions for the data on the other colors, that is, red and blue. From the top to the end scanned positions for the respective colors, the mapping coordinates deriving circuit 108 works out the coordinates of the picture elements for the read color data. Mapping circuit 109 maps the respective color data on the image memory 110 at the positions corresponding to the coordinates obtained by the mapping coordinates deriving circuit 108.
Abstract:
An adjustable chassis for variable brightness for a scanner includes a light source, a reflection means, a lens, a charge coupled device and a brightness adjuster. The brightness adjuster may be a reflection mirror adjuster which can change the angle of a first reflection mirror, or a lamp holder adjuster which can change the light emitting angle toward the scanning document, or a light source adjuster which can change the distance between the light source and the scanning document so that brightness on the document may be obtained at an optimum degree to achieve better scanning quality.
Abstract:
An image forming apparatus, includes an image forming unit including an image bearing member, a beam generating unit for generating a plurality of light beams and an optical scan system for scanning the image bearing member with the plurality of light beams to write an image, a beam detecting unit for detecting the plurality of light beams scanning the image bearing member at predetermined positions and obtaining a plurality of beam detection signals, a clock generating unit for generating a single clock signal, a controller for controlling the frequency of the single clock signal and a synchronization circuit for controlling the phase of the single clock signal in accordance with the plurality of beam detection signals obtained by the beam detecting unit, and generating a plurality of control clocks, wherein the plurality of beams are generated in accordance with the plurality of control clocks.