Abstract:
A plating-pretreatment solution comprising an organic sulfonic acid, thiourea, fluoroboric acid and hypophosphorous acid and a plating-pretreatment method comprising contacting a film carrier tape in which a wiring pattern is formed on a surface of an insulating film with a plating-pretreatment solution comprising an organic sulfonic acid, thiourea, fluoroboric acid and hypophosphorous acid to remove metals remaining on the insulating film. According to the plating-pretreatment solution and the plating-pretreatment method, metals remaining on the surface of the insulating film exposed by etching are removed, and the occurrence of migration is prevented.
Abstract:
A method and apparatus to eliminate conductive contamination reliability problems for assembled substrates, such as electrical arcing in power semiconductor leads. One embodiment of the invention involves a method for assembling an electrical component having leads on a substrate having conductive contacts, wherein an elastomer part encapsulates the leads of the electrical component. A second embodiment of the invention involves assembling an electrical component having leads to a substrate having conductive contacts, wherein an elastomer shape cut by a punch die encapsulates the leads of the electrical component. A third embodiment of the invention involves an assembled substrate including an electrical component having leads, and an elastomer surrounding the leads to encapsulate the leads.
Abstract:
The present invention relates to a cleaning solution capable of removing efficiently at the same time particles and metallic impurities from a substrate surface without corroding metallic materials. The cleaning solution for cleaning substrates of electronic materials comprises an organic acid compound and at least one selected from the group consisting of dispersants and surfactants.
Abstract:
A laminate comprising an insulation layer sandwiched between a pair of electrically conductive layers is prepared for electrical insulation testing by using a laser to remove a strip from at least one of the conductive layers proximate the edge of the laminate to electrically isolate a central, bulk portion of the conductive layer from the edges of the laminate. Conductive material that may be smeared across an edge of the laminate will not therefore provide an electrical short between the portion of the conductive layer surrounded by the slot and the second conductive layer on the opposite side of the insulation layer.
Abstract:
The present invention relates to a cleaning solution capable of removing efficiently at the same time particles and metallic impurities from a substrate surface without corroding metallic materials. The cleaning solution for cleaning substrates of electronic materials comprises an organic acid compound and at least one selected from the group consisting of dispersants and surfactants.
Abstract:
After copper plates 14 are bonded to both sides of a ceramic substrate 10 via a brazing filler metal 12, UV curing alkali peeling type resists 16 are applied on predetermined portions of the surfaces of the copper plates 14 to etch undesired portions of the copper plates 14 to form a metal circuit portion. While the resists 16 are maintained, undesired portions of the brazing filler metal 12 and a reaction product, which is produced by a reaction of the brazing filler metal 12 with the ceramic substrate 10, are removed (or undesired portions of the brazing filler metal 12 and a reaction product, which is produced by a reaction of the brazing filler metal 12 with the ceramic substrate 10, are removed, and the side portion of the metal circuit portion is etched). Thereafter, the resists 16 are peeled off, and an NinullP electroless plating 18 is carried out. Thus, in a method for producing a metal/ceramic bonding circuit board, it is possible to easily control the sectional shape of a metal/ceramic bonding circuit board by a smaller number of steps and at low costs, and it is possible to produce a metal/ceramic bonding circuit board which is more reliable with respect to thermal shock resistance and insulation performance.
Abstract:
A wiring substrate is formed of a plurality of metal wirings 14e formed on a substrate 7c. A guard wiring 29 fabricated of an electrically conductive oxide such as ITO is interposed between at least a pair of adjacent ones of a plurality of metal wirings 14e. When voltages V1, V2, V3, and V4 applied to the metal wirings 14e are related to be V1>V2 >V3 >V4, a guard wiring 29 is present between a metal wiring 14e functioning as an anode and a metal wiring 14e functioning as a cathode, and the anode metal wiring 14e is prevented from being corroded.
Abstract:
A process for removal of undesirable conductive material (e.g., catalyst material and seeped circuit material) on a circuitized substrate and the resultant circuitized substrates disclosed. Such process and resultant circuit effectively address the electrical shorting problems caused by nonremoval of the residual catalyst material and circuit material which has seeped under the residual catalyst material. The process includes the steps of: a) providing a catalyst layer (e.g., palladium and tin) having circuit pattern (e.g., copper) thereon; b) pretreating the catalyst layer and the circuit pattern (e.g., with a cyanide dip) for removal of undesirable portions of each which cause electrical leakage between circuit lines of the circuit pattern; c) oxidizing the catalyst layer and the circuit pattern (e.g., with chlorite, permanganate, hydrogen peroxide, or air at a temperature elevated above ambient conditions); and d) removing the undesirable portions of the catalyst layer and the undesirable portions of the circuit pattern (e.g., with a cyanide submersion). The resultant circuitized substrate includes a circuit pattern on a catalyst layer wherein undesirable portions of the catalyst layer and circuit pattern are completely removed between the circuit features of the circuit pattern so that electrical leakage between the circuit features does not occur.
Abstract:
Short circuiting in printed circuit boards made by processes in which a continuous metal layer applied by electroless deposition is etched to form the conductor pattern is eliminated by subjecting the board to an oxidation treatment after etching but before removal of the etching agent.
Abstract:
Short circuiting in printed circuit boards made by processes in which a continuous metal layer applied by electroless deposition is etched to form the conductor pattern is eliminated by subjecting the board to an oxidation treatment after etching but before removal of the etching agent. A circuit board is thereby formed having an insulating material substrate and a conductor formed thereon.