Abstract:
An emitter array produced using etch mask and a method for making such an etch mask. The emitter comprises a substrate, forming a conducting layer on the substrate, forming an emitting layer on the conducting layer, forming an etch mask having a controlled distribution of a plurality of mask sizes over the emitting layer, and forming at least one emitter by removing portions of the emitting layer using the etch mask. The method for making the etch mask comprises forming an etch mask layer over an emitting layer, forming a patterning layer having a controlled distribution of mask sizes over the etch mask layer, and forming the etch mask by removing portions of the etch mask layer using the controlled distribution of mask sizes in the patterning layer.
Abstract:
Compact fluorescent lamp comprising a fluorescent lamp body (3), a cathode space (9) comprising a screened space (11) around an electrode (5) arranged inside the compact fluorescent lamp (1), and a power supply device (19) so arranged as to provide an electrical connection between the electrode (5) and a contact device (21) positioned next to the contact end (13) of the compact fluorescent lamp. The screened space (11) is formed by the electrode (5) enclosing the internal wall (7) of the fluorescent lamp body (3) and by a neighbouring electrode (5) and beyond it a disc-shaped cathode screen (15) in a direction away from the contact end (13) containing a central opening (17).
Abstract:
A PED is constituted by arranging signal lines and scanning lines, in the form of a matrix, on the inner surface of a rear substrate and by forming PZT films, which are used as electron-emitting members, at the intersections of the signal lines and the scanning lines. When a voltage is applied between element electrodes connected to the lines, each PZT film emits an electron beam having a cross-section shape that depends on the shape of the PZT film.
Abstract:
Provided is a first substrate and a second substrate which face each other; a plurality of barrier ribs which define a space between the first and second substrates to form a plurality of cells and are located between the first and second substrates; a discharge gas filling the cells; a phosphor layer formed on the inner walls of the cells; a plurality of first electrodes formed on an inner surface of the first substrate; a plurality of second electrodes on an inner surface of the second substrate located in a direction crossing the first electrodes; a plurality of third electrodes formed on the first electrodes; and an electron accelerating layer which emits a first electron beam into the cells to excite the discharge gas when a voltage is applied to the first and third electrodes, and which is interposed between the first and third electrodes, wherein the electron accelerating layer is formed by printing an electron accelerating layer forming paste composition, drying the printed composition, and baking the dried composition, and contains at least one nanoparticle selected from a silicon nanoparticle and a conductive nanoparticle, and an insulating material.
Abstract:
A method of manufacturing an electron-emitting source includes first to third steps. In the first step, a cathode structure made of a metal containing any one of ion, nickel, cobalt, and chromium is heated to a first temperature in a reaction furnace to which a carbon source gas has been introduced, to form a plurality of first carbon nanotubes on the cathode structure by chemical vapor deposition. In the second step, the metal serving as a material of the cathode structure is deposited on at least either one of the cathode structure and the plurality of first carbon nanotubes, to form a catalyst metal layer. In the third step, the cathode structure including the catalyst metal layer is heated to a second temperature higher than the first temperature in the reaction furnace to which the carbon source gas has been introduced, to form a plurality of second carbon nanotubes which are thinner than the first carbon nanotubes on the catalyst metal layer by chemical vapor deposition. An electron-emitting source is also disclosed.
Abstract:
An exemplary method for fabricating a carbon nanotube-based field emission device is provided. A substrate is provided. A catalyst layer is formed on the substrate. A carbon nanotube array is grown from the catalyst layer. The carbon nanotube array includes a root portion and an opposite top portion respectively being in contact with and away from the catalyst layer. A cathode base with an adhesive layer formed thereon is provided. The top portion of the carbon nanotube array is immersed into the adhesive layer. The adhesive layer is solidified to embed the immersed top portion into the solidified adhesive layer. The root portion of the carbon nanotube array is exposed.
Abstract:
An electron emission display device includes a first substrate and a second substrate facing each other, a side member formed along edges of the first substrate and the second substrate to form a vacuum envelope together with the first substrate and the second substrate, an electron emission unit provided on the first substrate, a light emission unit provided on the second substrate for emitting visible light by means of electrons from the electron emission unit, and a conductive layer formed on at least a partial exterior surface of the vacuum envelope and connected to a ground voltage for discharging static charge accumulated in the vacuum envelope.
Abstract:
The present invention provides an emissive flat panel display device which is capable of performing a gate operation at a relatively low voltage of several V to several tens V using gate electrodes. In the emissive flat panel display device which includes a back panel which is constituted of a back substrate on which cathode electrodes having electron sources formed of carbon nanotubes and gate electrodes are formed, a face panel which forms phosphors and anode electrodes thereon, and a sealing frame which seals the back panel and the face panel, the difference between an electric field strength Emax for allowing the electron sources to obtain the required maximum emission current density and an electric field strength Emin which becomes the minimum emission current density is set to 1V/μm or less, and preferably 0.5V/μm or less.
Abstract:
An electron emission display device includes first and second substrates facing each other with a predetermined distance therebetween, an electron emission unit formed at the first substrate, and an image display unit formed at the second substrate. A grid electrode is disposed between the first and the second substrates and has a plurality of beam guide holes arranged in a first predetermined pattern, and spacer insertion holes arranged in a second predetermined pattern. Spacers are inserted into the respective spacer insertion holes of the grid electrode, and are fitted between the first and the second substrates. The size of each of the spacer insertion holes is larger than the outer size of each of the spacers.
Abstract:
Provided is a field emission display (FED) with a carbon nanotube emitter and a method of manufacturing the same. A gate stack that surrounds the CNT emitter has a mask layer that covers an emitter electrode adjacent to the CNT emitter, and a gate insulating film, a gate electrode, a focus gate insulating film (SiOx, X
Abstract translation:提供了具有碳纳米管发射体的场致发射显示器(FED)及其制造方法。 围绕CNT发射器的栅极堆叠具有覆盖与CNT发射极相邻的发射极的掩模层,以及栅极绝缘膜,栅极电极,聚焦栅极绝缘膜(SiO x X,X <2),以及形成在掩模层上的聚焦栅电极。 聚焦栅极绝缘膜的厚度为2μm以上,优选为3〜15μm,优选使用PECVD制造。 用于形成聚焦栅极绝缘膜和/或栅极绝缘膜的硅烷和硝酸的流量分别保持在50〜700sccm和700〜4,500sccm。 通过这样做,并且通过使氧化物变厚,氧化物不易开裂,因此不太容易产生泄漏电流。