Abstract:
Aspects of the present disclosure provide synchronization techniques for user equipment (UEs) that may be otherwise unable to support sidelink communication a synchronized UE and may have also lost global navigation satellite system (GNSS) and/or Evolved Node Base Stations (eNBs) as a synchronization source. In such instance, the unsynchronized UE may utilize reference signals (RS) from the data packets received from other UEs to track the timing and perform autonomous timing adjustments based thereon for synchronized packet transmission or reception.
Abstract:
An electron source according to the present disclosure includes a columnar portion made of a first material having an electron emission characteristic; and a tubular portion that is disposed to surround the columnar portion and made of a second material having a higher work function than the first material, wherein a hole that extends in a direction from one end face toward the other end face and has a substantially circular cross-sectional shape is formed in the tubular portion, and the columnar portion has a substantially triangular or substantially quadrangular cross-sectional shape and is fixed to the tubular portion in an abutting engagement with an inner surface of the hole.
Abstract:
Examples disclosed herein involve a first connector that facilitates access to a system, a second connector that facilitates access to the same system, and an adapter controller to facilitate concatenating functionality of the first connector and the second connector when the apparatus is communicatively coupled to the system via the first connector and the second connector; and establish a high speed connection between the system and the apparatus via the first connector and the second connector.
Abstract:
An enclosure is associated with a network address. A management processor of a server device within the enclosure and an enclosure processor of a management mechanism within the enclosure share the network address. A networking switch processor of a networking switch within the enclosure is to route the packet to the enclosure processor, or directly to the management processor without the packet passing through the management mechanism.
Abstract:
An emitter has a basic unit with at least one emission surface. Accordingly, the basic unit has deep structuring in a region of the at least one emission surface. More specifically, the basic unit has the deep structuring on both a front side and on a rear side in the region of the emission surface for improving emission properties.
Abstract:
An electron source for an X-ray scanner includes an emitter support block, an electron-emitting region formed on the support block and arranged to emit electrons, an electrical connector arranged to connect a source of electric current to the electron-emitting region, and heating structure arranged to heat the support block.
Abstract:
Spindt-type field-emission cathodes for use in electric propulsion (EP) systems having self-assembling nanostructures that can repeatedly regenerate damaged cathode emitter nanotips. A nanotip is created by applying a negative potential near the surface of a liquefied base metal to create a Taylor cone converging to a nanotip, and solidifying the Taylor cone for use as a field-emission cathode. When the nanotip of the Taylor cone becomes sufficiently blunted or damaged to affect its utility, the base metal is re-liquefied by application of a heat source, a negative potential is reapplied to the surface of the base metal to recreate the Taylor cone, and a new nanotip is generated by solidifying the base metal.
Abstract:
A method for preparation of carbon nanotubes (CNTs) bundles for use in field emission devices (FEDs) includes forming a plurality of carbon nanotubes on a substrate, contacting the carbon nanotubes with a polymer composition comprising a polymer and a solvent, and removing at least a portion of the solvent so as to form a solid composition from the carbon nanotubes and the polymer to form a carbon nanotube bundle having a base with a periphery, and an elevated central region where, along the periphery of the base, the carbon nanotubes slope toward the central region.
Abstract:
Provided is an electron source which outputs a stable electron beam even when vibration is applied from the external to an apparatus which uses the electron source. The electron source is provided with an insulator (5); two conductive terminals (4) arranged at an interval on the insulator (5); a long filament (3) stretched between the conductive terminals (4); and a needle-like cathode (1) having an electron emitting section attached to the filament (3). The vertical cross-section shape of the filament (3) in the axis direction has a long direction and a short direction, and the maximum length in the long direction is 1.5 times or more but not more than 5 times the maximum length in the short direction.
Abstract:
A field emission device (10) includes a base (12), a conductive paste (16), and at least one carbon nanotube yarn (14). The at least one carbon nanotube yarn is attached to the base using the conductive paste. This avoids separation of the at least one carbon nanotube yarn from the base by electric field force in a strong electric field. A method for making the field emission device includes the steps of: (a) providing a base; (b) attaching at least one carbon nanotube yarn to the base using conductive paste; and (c) sintering the conductive paste to obtain the field emission device with the carbon nanotube yarn firmly attached to the base.