Abstract:
This invention relates to a system and method for processing signals in a signal processing system so as at least to ameliorate spurious signals generated in said signal processing system during processing of signals. The method, which is implemented by the system in accordance with the invention, typically comprises receiving a signal of unknown and arbitrary frequency within the operating frequency range of the signal processing system, wherein the input signal comprises at least a fundamental signal. The method then comprises generating, in one signal processing path, a compensation signal with same amplitude and phase as the spurious signal. The compensation signal is then subtracted from the received input signal or added out of phase to the received input signal, in another signal processing path. In this way, the spurious signal is cancelled from the received signal and/or the received signal is pre-distorted to account for spurious signals generated during further processing in the signal processing system.
Abstract:
A method of testing pavement includes repeatedly simulating wheel loading on the pavement by repeatedly applying a plurality of discreet forces with a downwards component, in series and one after the other, to an upper surface of a test strip of the pavement thereby to simulate a load exerted by a travelling wheel and hence subjecting the pavement to accelerated testing. Also provided is an accelerated pavement testing device (10) which includes a carrier (12) and an array of actuators (16) carried by the carrier (12) and configured each rapidly and repeatedly to apply a discrete force with a downwards component to an upper surface of a test strip of pavement. Each actuator (16) is associated with at least one force transfer element or sole (22) configured in use to transfer said discreet force from the actuator (16) to pavement being tested thereby to simulate a load exerted by a travelling wheel to the test strip of pavement and hence to subject the pavement to accelerated testing.
Abstract:
A controllable laser amplifier apparatus includes a gain medium and a seed laser emitter configured to generate a seed laser beam, the seed laser emitter directed toward the gain medium. The apparatus has at least two pump laser emitters configured to generate respective pump laser beams, wherein the pump laser emitters are adjustable such that respective intensities of the pump laser beams are adjustable relative to one another and/or relative to the seed laser pump, wherein the pump laser emitters are arranged such that at least one of the pump laser beams is laterally offset relative to the seed laser beam, and wherein the pump laser beams are configured to effect a gain profile in the gain medium. An output laser beam from the gain medium is a function of at least the gain profile and the seed laser beam.
Abstract:
The present invention relates to methods for the identification of anti-HIV miRNAs and anti-HIV pharmaceutical compounds using high-throughput screening methods, comprising: transfecting reporter cells with a panel of miRNAs, infecting the reporter cells with HIV, screening the cells to identify miRNAs that modulate HIV infection and identifying the specific pathways, nucleic acids and/or polypeptides that are targeted by the miRNAs. The invention further provides for the identification and screening of anti-HIV pharmaceutical compounds having known activity against the specific pathways, nucleic acids and/or polypeptides that are targeted by the miRNAs for efficacy in the treatment of HIV. The invention also provides for the use of miRNA mimics, miRNA inhibitors and pharmaceutical compounds (including oncology drugs and kinase inhibitors) in the treatment and/or prevention of HIV infection.
Abstract:
This invention relates to a process for producing an isotactic polypropylene based composite, comprising: reactive blending of isotactic polypropylene homo-polymer; polypropylene grafted with a carboxylic anhydride or a furan type moiety such as maleic anhydride grafted polypropylene; and an amino silane such as (3-aminopropyl)triethoxysilane to produce an isotactic polypropylene based composite such that the crystallization temperature of the isotactic polypropylene based composite is in a range of about 120° C. to about 126° C. The reactive blending can further take place in the presence of an organically modified nanoclay.
Abstract:
The present invention relates to methods for the identification of anti-HIV miRNAs and anti-HIV pharmaceutical compounds using high-throughput screening methods, comprising: transfecting reporter cells with a panel of miRNAs, infecting the reporter cells with HIV, screening the cells to identify miRNAs that modulate HIV infection and identifying the specific pathways, nucleic acids and/or polypeptides that are targeted by the miRNAs. The invention further provides for the identification and screening of anti-HIV pharmaceutical compounds having known activity against the specific pathways, nucleic acids and/or polypeptides that are targeted by the miRNAs for efficacy in the treatment of HIV. The invention also provides for the use of miRNA mimics, miRNA inhibitors and pharmaceutical compounds (including oncology drugs and kinase inhibitors) in the treatment and/or prevention of HIV infection.
Abstract:
The invention provides a process and an apparatus for the production of a metal selected from metallic alkali metals, M, and alkaline earth metals, Mac from the molten salts thereof, the apparatus including at least an electrochemical cell with planar anodes and cathodes installed in the following sequence: {a-c-a)n to produce alkali metal or alkaline earth metals electrolytically!y from the respective chloride salts thereof, wherein n represents the number of times the sequence of anode-cathode-anode is repeated.
Abstract:
A biological process for treating metal- and/or sulphate-containing waste water includes introducing at least one macroalgal species selected from Klebsormidium acidophilum, Microspora quadrata and Oedogonium crassum, into a body of water. Waste water is introduced into the body of water. In a water treatment stage, the macroalgal species are allowed to biosorb at least one metal and/or at least one sulphate from the waste water, thereby to bioremediate the waste water.
Abstract:
A process for producing a lithium-manganese-nickel oxide spinel material includes maintaining a solution comprising a dissolved lithium compound, a dissolved manganese compound, a dissolved nickel compound, a hydroxycarboxylic acid, a polyhydroxy alcohol, and, optionally, an additional metallic compound, at an elevated temperature T1, where T1 is below the boiling point of the solution, until the solution gels. The gel is maintained at an elevated temperature until it ignites and burns to form a Li—Mn—Ni—O powder. The Li—Mn—Ni—O powder is calcined to burn off carbon and/or other impurities present in the powder. The resultant calcined powder is optionally subjected 1 to microwave treatment, to obtain a treated powder, which is annealed to crystallize the powder. The resultant annealed material is optionally subjected to microwave treatment. At least one of the microwave treatments is carried out. The lithium-manganese-nickel oxide spinel material is thereby obtained.
Abstract:
The invention provides a method of printing, onto a substrate (12), an array (14) of spots of reagent compositions for use in a chemical and/or biochemical analysis. The method includes displacing an array of reagent composition containing capillary tubes (22) arranged alongside one another from an inoperative position to an operative position in which open ends of the capillary tubes (22) simultaneously impinge against a substrate and thereafter displacing the array of tubes (22) from the operative position back to the inoperative position. The invention extends to a printing apparatus (10), a method of printing a layered array of spots of reagent compositions, a method of introducing reagent compositions into the tubes, a reagent introducing device for introducing reagent compositions into the tubes and a printing installation which includes the printing apparatus (10) and the reagent introducing device.