Abstract:
A measuring apparatus and a measuring method are provided. The measuring apparatus includes an optical system to condense light, a light receiving device to receive light condensed by the optical system at a plurality of light receiving positions and convert the light into an electric signal, a plurality of optical band-pass filters arranged near a lens stop of the optical system, each of the optical band-pass filters having a different spectral transmittance, a lens array arranged between the optical system and the light receiving device, the lens array having a plurality of lenses each of which is arranged substantially in parallel with a two-dimensional surface of the light receiving device, and a correction unit to correct the electric signal for each one of the plurality of light receiving positions of the light receiving device. The measuring method is performed by the measuring apparatus.
Abstract:
A predetermined-area management system is configured to communicate with a communication terminal. The predetermined-area management system includes: a storage unit that stores image identification information for identifying image data and predetermined-area information for identifying a predetermined area in the image data in association with each other; a receiving unit that receives image identification information that is transmitted from the communication terminal; an extraction unit that searches the storage unit by using the image identification information received by the receiving unit so as to extract associated predetermined-area information; and a transmitting unit that transmits, to the communication terminal, the predetermined-area information extracted by the extraction unit.
Abstract:
The image capturing device includes an optical system that focuses lights from an object to generate optical information, a filter provided near a diaphragm position of the optical system, the filter having a plurality of types of spectral characteristics, a sensor that converts the optical information of the object to electronic data, the sensor providing a plurality of spectral transmittance values that sequentially and spatially change, and a lens array having a plurality of lenses being arranged in substantially parallel in a direction of a two-dimensional surface of the sensor.
Abstract:
An imaging device includes a filter, an imaging element, a lens, a spectral image generator, and an exposure adjuster. The filter includes a plurality of filter areas having different spectral transmission characteristics. The imaging element receives light transmitted through the filter and outputs image information. The lens array includes a plurality of lenses arranged approximately parallel to a light receiving surface of the imaging element and is arranged between the filter and the imaging element. The spectral image generator generates a plurality of spectral images respectively corresponding to the plurality of filter areas on the basis of the image information output by the imaging element. The exposure adjuster adjusts an exposure time of the imaging element on the basis of luminance values of the spectral images.
Abstract:
An image capturing device and an image capturing system are provided. The image capturing device includes an optical system, a first filter provided near a diaphragm position of the optical system, a sensor, and a lens array. The first filter includes a plurality of filters respectively having different spectral characteristics. The sensor includes a plurality of filters respectively having different spectral characteristics. The lights from an object pass through the respective filters of the first sensor and the respective filters of the second sensor to simultaneously form a plurality of types of spectral image of the object on an image plane of the sensor.
Abstract:
An imaging system includes an imaging body having an optical system and an imaging element, a power supplier configured to supply power to the imaging element, and a housing configured to hold the imaging body and the power supplier, wherein the optical system includes at least one optical element projecting from the housing, and a distance AP between a gravity center A of a portion including the optical system and a gravity center P of the entire imaging system and a distance BP between a gravity center B of the power supplier and the gravity center P of the entire imaging system satisfy the following condition. AP>BP
Abstract:
An imaging device includes a filter, an imaging element, a lens, a spectral image generator, and an exposure adjuster. The filter includes a plurality of filter areas having different spectral transmission characteristics. The imaging element receives light transmitted through the filter and outputs image information. The lens array includes a plurality of lenses arranged approximately parallel to a light receiving surface of the imaging element and is arranged between the filter and the imaging element. The spectral image generator generates a plurality of spectral images respectively corresponding to the plurality of filter areas on the basis of the image information output by the imaging element. The exposure adjuster adjusts an exposure time of the imaging element on the basis of luminance values of the spectral images.
Abstract:
Provided is an optical scanning device including: a plurality of light sources; an optical deflector that includes reflection surfaces that deflect different light beams toward opposite sides of the optical deflector; and a light-shielding member provided in an area between incident light beams emitted from the plurality of light sources. The light-shielding member is positioned such that a portion of the light-shielding member is in a light-shield area surrounded by a circumscribed circle of the optical deflector, a line tangent to the circumscribed circle and orthogonal to a Y direction, and the incident light beam, the Y direction being a direction parallel to a main scanning direction and passing through a rotation center of the optical deflector, the main scanning direction being a direction, in which surfaces of image carriers are scanned.
Abstract:
A wide-angle lens having a field angle larger than 180 degrees includes, in order from an object side to an image side, a front group, a reflection surface, and a back group, wherein the front group includes three lenses having a negative refractive power, the reflection surface is configured to curve an optical axis of the front group at 90 degrees toward the back group, the back group includes four lenses having a positive refractive power, a front principle point is set between a second lens and a third lens from the object side in the front group, and a focal length of an entire system f and a distance between an intersection of the reflection surface and the optical axis of the front group and the front principle point d satisfy the following condition (1) 7.0
Abstract:
In an exposure device, a light source device having multiple light emitting devices arranged in one-dimensional or two-dimensional directions projects light against an image bearing member. A light source holding member holds the light source device in place. An optical device condenses the light projected from the light source device onto the image bearing member. An optical device holding member holds the optical device to maintain a predetermined gap between the optical device and the light source device on the light source holding member. A positioning member supports the light source holding member above the image bearing member to maintain a predetermined gap between the image bearing member and the light source device on the light source holding member. When seen from a light emitting point of the light source device, a position at which the positioning member supports the light source holding member is opposite the image bearing member.