Abstract:
A method is described for computing a statistically significant difference between dysplasia and Barrett's esophagus (both with and without inflammatory component) using a discriminate function with diffuse reflectance measurements performed at a minimum of four different wavelengths of 485, 513, 598, and 629 nm. The discriminate function found depends both on local blood fraction volume THB and oxygenation SO2. A pull-back approach of spectral data acquisition is disclosed which takes into account tissue motility in esophagus and measurement geometry peculiarities. The pull-back approach provides a significant improvement of measurement reproducibility and reduction of data deviation by 75-100%, resulting in a better discrimination between different histological groups.
Abstract:
An endoscopic video system and method using a camera with a single color image sensor, for example a CCD color image sensor, for fluorescence and color imaging and for simultaneously displaying the images acquired in these imaging modes at video rates in real time is disclosed. The tissue under investigation is illuminated continuously with fluorescence excitation light and is further illuminated periodically using visible light outside of the fluorescence excitation wavelength range. The illumination sources may be conventional lamps using filters and shutters, or may include light-emitting diodes mounted at the distal tip of the endoscope.
Abstract:
Vessel perfusion and myocardial blush are determined by analyzing fluorescence signals obtained in a static region-of-interest (ROI) in a collection of fluorescence images of myocardial tissue. The blush value is determined from the total intensity of the intensity values of image elements located within the smallest contiguous range of image intensity values containing a predefined fraction of a total measured image intensity of all image elements within the ROI. Vessel (arterial) peak intensity is determined from image elements located within the ROI that have the smallest contiguous range of highest measured image intensity values and contain a predefined fraction of a total measured image intensity of all image elements within the ROI. Cardiac function can be established by comparing the time differential between the time of peak intensity in a blood vessel and that in a region of neighboring myocardial tissue both pre and post procedure.
Abstract:
A method to visualize, display, analyze and quantify angiography, perfusion, and the change in angiography and perfusion in real time, is provided. This method captures image data sequences from indocyanine green near infra-red fluorescence imaging used in a variety of surgical procedure applications, where angiography and perfusion are critical for intraoperative decisions.
Abstract:
An endoscopic video system and method using a camera with a single color image sensor, for example a CCD color image sensor, for fluorescence and color imaging and for simultaneously displaying the images acquired in these imaging modes at video rates in real time is disclosed. The tissue under investigation is illuminated continuously with fluorescence excitation light and is further illuminated periodically using visible light outside of the fluorescence excitation wavelength range. The illumination sources may be conventional lamps using filters and shutters, or may include light-emitting diodes mounted at the distal tip of the endoscope.
Abstract:
Vessel perfusion and myocardial blush are determined by analyzing fluorescence signals obtained in a static region-of-interest (ROI) in a collection of fluorescence images of myocardial tissue. The blush value is determined from the total intensity of the intensity values of image elements located within the smallest contiguous range of image intensity values containing a predefined fraction of a total measured image intensity of all image elements within the ROI. Vessel (arterial) peak intensity is determined from image elements located within the ROI that have the smallest contiguous range of highest measured image intensity values and contain a predefined fraction of a total measured image intensity of all image elements within the ROI. Cardiac function can be established by comparing the time differential between the time of peak intensity in a blood vessel and that in a region of neighboring myocardial tissue both pre and post procedure.