Abstract:
A method of preparing aluminum alloy-resin composite and an aluminum alloy-resin composite obtained by the same are provided. of the method comprises: S1: anodizing a surface of an aluminum alloy substrate to form an oxide layer on the surface, the oxide layer including nanopores; S2: immersing the resulting aluminum alloy substrate obtained in step S1 in a buffer solution having a pH of about 10 to about 13, to form a corrosion pores on an outer surface of the oxide layer; and S3: injection molding a resin onto the surface of the resulting aluminum alloy substrate obtained in step S2 in a mold to obtain the aluminum alloy-resin composite.
Abstract:
A lamp for a compartment of a vehicle includes: a base, a mounting plate disposed on the base and having a power source receiving part, a power source received in the power source receiving part, and a lamping source disposed on the mounting plate and having a luminous region of a sector shape. The power source receiving part is located at a side of the lamping source.
Abstract:
A power system switching between a charge-discharge function and a driving function and an electric vehicle including the same are provided. The power system includes a power battery; a charge-discharge socket; a bidirectional DC/DC module; a driving control switch connected with the power battery and the bidirectional DC/DC module; a bidirectional DC/AC module connected with the driving control switch and the power battery; a motor control switch connected with the bidirectional DC/AC module and a motor; a charge-discharge control module connected with the bidirectional DC/AC module and the charge-discharge socket; and a controller module configured to establish a path between the power battery and the motor when a current operation mode of the power system is a driving mode, and to establish a path between the charge-discharge socket and the power battery when the current operation mode of the power system is a charge-discharge mode.
Abstract:
A die casting apparatus (100) for amorphous alloy comprises a stationary die (1) and a movable die (2); a sealed cabin (4) difining a sealing chamber (40); a protecting gas supplying device connected with the sealed cabin (4) for supplying the protecting gas into the sealing chamber (40); a melting device (5) for receiving and melting amorphous alloy; a feed sleeve (6) having a molten material inlet (60), with a plunger (7) positioned therein for injecting the molted amorphous alloy from the melting device (5) into a die chamber via the molten material inlet (60); a driving device (8) connected with the plunger (7) for driving the plunger (7) in the feed sleeve (6); and a gas purifying device (10) communicated with the sealed cabin (4) for purifying the gas from the sealed cabin (4). A method of die casting an amorphous alloy comprises the steps of purifying a sealing chamber (40) defined in a sealed cabin (4); supplying protecting gas into the sealing chamber (40) to maintain the protecting gas in the sealing chamber (40) to a positive pressure; feeding amorphous alloy into a melting device (5) to obtain the molten amorphous alloy; feeding the molten amorphous alloy into a die chamber (3); and opening the mated stationary and movable dies to extract at least a component. The apparatus and method use positive pressure protecting gas without the need to form high degree vacuum, thus reducing manufacturing and maintenance costs.
Abstract:
An electric heater, and an apparatus, a heating and air conditioning system and a vehicle, each comprising the electric heater, are provided. The electric heater comprises an outer frame; a heating core configured to connect to a power source and disposed within the outer frame; and a sealing-waterproof glue member disposed within the outer frame and configured to encase at least one end of the heating core. The heating core further comprises: a plurality of heat dissipating components and heating components arranged alternately, and each of the heat dissipating component is coupled with a heating component via a thermal conductor. Each of the heating components further comprises a core tube and a positive temperature coefficient thermistor disposed in the core tube.
Abstract:
An ink composition is provided, a method of metalizing a surface of an insulation substrate and an article obtainable by the method are also provided. The ink composition may comprise a metal compound and an ink vehicle, the metal compound is at least one selected from a group consisting of a compound of formula I and a compound of formula II, TiO2-σ(I), M1M2pOq (II), 0.05≦σ
Abstract:
A charging device, a method for controlling a charging device, and a method for detecting a peripheral device are provided. The charging device comprises: a charging gun; a power module; and a controlling module coupled with the charging gun and the power module, wherein the controlling module is configured to determine whether the charging gun is connected with a peripheral device to be charged, and if yes, to control the power module to convert AC electricity to DC electricity to charge the peripheral device. A method for controlling a charging device is also provided. The method comprises: determining whether the charging gun is connected with a peripheral device; and if yes, controlling the power module to convert AC electricity to DC electricity to charge the peripheral device if the charging gun is determined to be connected to the peripheral device.
Abstract:
A method and a system for controlling vehicle electric power, and a vehicle comprising the same, are provided. The method includes converting a first voltage supplied by at least one of a startup generator and a storage battery of the vehicle into a second voltage, and controlling the at least one of the startup generator and the storage battery to supply power to a first device with the first voltage, and to supply power to a second device with the second voltage. The system includes a startup generator and a storage battery, configured to supply a first voltage, and a converter configured to convert the first voltage into a second voltage. At least one of the startup generator and the storage battery is configured to supply power to a first device with the first voltage, and to supply power to a second device with the second voltage.
Abstract:
A device for moving a vehicle-mounted object and a vehicle having the same are provided. The device comprises a housing with an opening, a cover frame mounted on the housing, a cover with a surface for mounting the vehicle-mounted object thereon, the cover being coupled with the cover frame and being capable of pivoting to either expose or cover at least a part of the opening, and a platform slidably fitted within the housing, being coupled with the cover and movable between a first position to cause the cover to pivot to expose at least a part of the opening, and a second position to cause the cover to pivot to cover at least a part of the opening.
Abstract:
An in-vehicle charging control device may comprise a control module, a charging socket, and a switching circuit. The charging socket has a charging connection confirming terminal (CC) and a protective grounding terminal (PE). The switching circuit is connected with the charging connection confirming terminal (CC) and the protective grounding terminal (PE) of the charging socket. The control module is connected with an in-vehicle battery via the switching circuit. The charging socket matches with a charging plug. The switching circuit is in a conducting state when the charging plug is plugged in the charging socket and in a disconnection state when the charging plug is not plugged in the charging socket.