Abstract:
The invention discloses improved processes for manufacturing a compound, 5-(2,6-Di-4-morpholinyl-4-pyrimidinyl)-4-trifluoromethylpyridin-2-amine, its monohydrochloride salt and intermediates thereof.
Abstract:
The present invention relates to antistatic, thermoplastic polyurethane comprising ethylmethylimidazole ethyl sulfate, to a process for production of antistatic, thermoplastic polyurethane comprising ethylmethylimidazole ethyl sulfate, and to the use of ethylmethylimidazole ethyl sulfate for the production of antistatic, thermoplastic polyurethane.
Abstract:
A device for measuring tire parameters of a vehicle, comprising a detector for detecting a tire pressure of the vehicle, a measuring system for detecting a tire profile depth of the vehicle, and an output unit for outputting measured tire parameters that include and/or take into account the tire pressure and the tire profile depth. The detector and the measuring system have a measuring arrangement which is designed to be driven over by the vehicle and which is designed to measure the tire pressure as well as the tire profile depth in a moving vehicle, and the output unit is designed to display a result of the measurement such that an operating person that drives the vehicle can detect the measurement in the vehicle or from the vehicle directly after driving over the measuring arrangement.
Abstract:
The invention refers to a thermoplastic polyurethane produced from at least an organic diisocyanate and a compound which is reactive toward isocyanates, wherein the polyurethane comprises the ester of a tricarboxylic acid with at least one alcohol and wherein all acid groups of the tricarboxylic acid are esterified with an alcohol. The invention further refers to a process for producing the respective polyurethane, products comprising this thermoplastic polyurethane and the use of the ester of a tricarboxylic acid as plasticizer in thermoplastic polyurethanes.
Abstract:
A household appliance, in particular a refrigeration device, in which ice bodies can be made of supplied water, includes a hose and/or tube assembly for supply of water to a receiving container, and a valve connected to the hose and/or tube assembly and constructed to release or suppress the water supply to the receiving container. The hose and/or tube assembly has zones in which a physical condition changes, wherein the valve is disposed in the hose and/or tube assembly in a region which has not yet encountered a change in the physical condition after water has been supplied into the hose and/or tube assembly.
Abstract:
The present invention pertains to a method for loading a crystallization device and for manufacturing a crystallization device comprising multiple receptacles with a pre-defined amount of at least one matrix-forming compound capable of forming a crystallization matrix for a membrane protein, said method comprising the following steps: a) Modifying the state of aggregation of said at least one matrix-forming compound to a fluidic state which allows dispensing said at least one matrix-forming compound, and b) dispensing a defined amount of said at least one matrix-forming compound into at least one receptacle of the crystallization device, wherein said dispensed matrix-forming compound solidifies within said receptacle. Thereby, pre-filled crystallization devices are obtained which can be used as consumables in particular in automated crystallization processes. Also provided are protein crystallization methods using respectively prepared crystallization devices.
Abstract:
A manufacturing method for a micromechanical semiconductor element includes providing on a semiconductor substrate a patterned stabilizing element having at least one opening. The opening is arranged such that it allows access to a first region in the semiconductor substrate, the first region having a first doping. Furthermore, a selective removal of at least a portion of the semiconductor material having the first doping out of the first region of the semiconductor substrate is provided. In addition, a membrane is produced above the first region using a first epitaxy layer applied on the stabilizing element. In a further method step, at least a portion of the first region is used to produce a cavity underneath the stabilizing element. In this manner, the present invention provides for the production of the patterned stabilizing element by means of a second epitaxy layer, which is applied on the semiconductor substrate.
Abstract:
This invention relates to tablets especially tablets formed by direct compression of a dipeptidylpeptidase IV (DPP-IV) inhibitor compound, a process for the preparation thereof; to new pharmaceutical formulations, and new tableting powders comprising DPP-IV inhibitor formulations capable of being directly compressed into tablets. The invention relates further to a process for preparing the tablets by blending the active ingredient and specific excipients into the new formulations and then directly compressing the formulations into the direct compression tablets. The invention also relates to vildagliptin particle size distribution and a new crystal form of vildagliptin particularly adapted for the preparation of improved tablets and other pharmaceutical compositions.
Abstract:
The present invention relates to a process for the preparation of a N-(N′-substituted glycyl)-2-cyanopyrrolidine comprising at least (a) reacting, in the presence of dimethylformamide, a compound of formula (V) wherein, independently of each other, X1 and X3 are halogen; X2 is halogen, OH, O—C(═O)—CH2X3, —O—SO2—(C1-8)alkyl or 13 O—SO2-(aryl), with L-prolinamide, followed by (b) reacting the resultant compound without isolation with a dehydration agent, optionally followed by (c) reacting, in the presence of a base, the resultant compound without isolation with an appropriate amine and (d) recovering the resultant compound in free form or in acid addition salt form.
Abstract translation:本发明涉及一种制备N-(N'取代的甘氨酰基)-2-氰基吡咯烷的方法,该方法至少包含(a)在二甲基甲酰胺存在下使式(Ⅴ)化合物与 彼此之间,X 1和X 3是卤素; X 2是卤素,OH,OC(-O)-CH 2 X 3,-O-SO 2 SUB - (C 1-8)烷基或13 O-SO 2 - (芳基)与L-脯氨酸酰胺,然后(b)使所得化合物无离子地反应 使用脱水剂,任选地随后(c)在碱的存在下,使所得化合物与适当的胺分离,和(d)以游离形式或以酸加成盐形式回收所得化合物。
Abstract:
A micromechanical sensor element and a method for the production of a micromechanical sensor element that is suitable, for example in a micromechanical component, for detecting a physical quantity. Provision is made for the sensor element to include a substrate, an access hole and a buried cavity, at least one of the access holes and the cavity being produced in the substrate by a trench etching and/or, in particular, an isotropic etching process. The trench etching process includes different trenching (trench etching) steps which may be divided into a first phase and a second phase. Thus, in the first phase, at least one first trenching step is carried out in which, in a predeterminable first time period, material is etched out of the substrate and a depression is produced. In that trenching step, a typical concavity is produced in the wall of the depression. A passivation process is then carried out in that first phase, in which the concavity produced in the walls of the depression by the first trenching step is covered with a passivation material. The first trenching step and the first passivation process may be carried out repeatedly in alternating succession within the first phase, with the result that a typical corrugation is obtained on the walls of the depression so produced. In the second phase of the trench etching process, the cavity is produced through the at least one access hole produced by the depression, by carrying out a second trenching step of a predetermined second time period that is distinctly longer in comparison with the first time period.