Abstract:
In one embodiment, the present invention includes a substrate; a detection electrode provided in a display region on a plane parallel to the substrate, the detection electrode including a plurality of metal wires; a first conductive layer provided in a peripheral region located to the outside the display region; a protective layer provided on the detection electrode; a polarizing plate provided above the protective layer; and a second conductive layer provided between the polarizing plate and the protective layer in a direction perpendicular to the substrate. The second conductive layer has a higher sheet resistance than the metal wires and is electrically coupled to the first conductive layer.
Abstract:
According to one embodiment, a touch detection device includes first detection electrodes in a detection area, second detection electrodes in the detection area, extending to intersect the first detection electrodes, first control lines connected to the first detection electrodes, respectively, and provided in a non-detection area, and second control lines connected to the second detection electrodes, respectively, and provided in the non-detection area. The second control lines overlap the first control lines at a plurality of positions as seen in plan view, such that areas of overlapping portions in which the first control lines overlap the second control lines are substantially equalized.
Abstract:
A detection apparatus includes a substrate, a display area, a peripheral area, a plurality of electrodes, a plurality of terminals, a first wire, and a second wire. The display area is provided on the surface of the substrate. The peripheral area is provided outside the display area. The electrodes are provided to the display area. The terminals are provided in correspondence with the respective electrodes in the peripheral area. The first wire couples an electrode to a terminal. The second wire couples the electrode to the terminal to which the first wire is coupled.
Abstract:
To provide a display capable of reducing each resistance of a drive electrode and a detection electrode, in the display which is provided with an input device having the drive electrode and the detection electrode formed on the same plane.A drive electrode includes a plurality of first electrode portions arranged in an X-axis direction, and a plurality of first connection portions each of which electrically connects the two first electrode portions adjacent to each other. A detection electrode includes a plurality of second electrode portions arranged in a Y-axis direction, and a plurality of second connection portions each of which electrically connects the two second electrode portions adjacent to each other. The first connection portion overlaps with the second connection portion in a planar view. Each of the first electrode portion and the second electrode portion contains metal or alloy, and has a mesh shape.
Abstract:
A capacitance-type touch panel, allowing disturbance noise and touch detection time to be reduced and having a simple configuration, is provided. The capacitance-type touch panel including: a plurality of drive electrodes each having a strip shape; a drive control circuit performing control such that a drive signal for touch detection is selectively applied to the drive electrodes; a plurality of touch detection electrodes arranged to intersect with the drive electrodes in such a manner that capacitance is formed in each intersecting part, and each outputting a detection signal in synchronization with the drive signal; and a detection circuit detecting an external proximity object based on the detection signal. The drive control circuit controls application of the drive signal in such a manner that the detection signal is a polarity-alternating signal including a positive-negative asymmetrical signal component which is due to presence of the external proximity object.
Abstract:
A display device with a touch detecting function is disclosed herein. In an embodiment, the display device includes a substrate, a display area in which pixels each composed of a plurality of color areas are arranged in a matrix on a plane parallel to a surface of the substrate, a touch detection electrode including a first conductive thin wire extending in a first direction on a plane parallel to the surface of the substrate, a dummy electrode provided to an area in which the first conductive thin wire is not arranged in a direction perpendicular to the surface of the substrate and including a plurality of second conductive thin wires, a drive electrode made of a translucent material to which a display drive signal is applied, the drive electrode being arranged on the substrate, and a display functional layer having a function to display an image on the display area.
Abstract:
According to one embodiment, a sensor-equipped display device comprises a display panel and a detection electrode. The panel includes a display area in which pixels are arranged with a first pixel pitch in a first direction and a second pixel pitch in a second direction. The electrode includes an pattern having line fragments. The pattern has connection points at which ends of the fragments are connected to each other, and at least part of the connection points is arranged linearly such that an arrangement gaps thereof in the first and second direction is set to a first and second connection point pitch.
Abstract:
Detection electrode wirings formed by an ITO film have a high resistance and the detection capability thereof is degraded with the increase of the size and/or resolution. A manufacturing method of a display device includes: (a) arranging liquid crystal between an array substrate and a counter substrate; (b) forming a metal layer and a low-reflection layer on the counter substrate after the step (a); (c) applying an overcoat film onto the metal layer and the low-reflection layer; and (d) curing the overcoat film to form a protection layer. The step (d) cures the overcoat film with light and heat.
Abstract:
According to one embodiment, a sensor-equipped display device includes a display panel includes at least a substrate and a sensor in a detection electrode including a transparent conductive layer. The transparent conductive layer includes a plurality of first regions in a crystalline state and a plurality of second regions in an amorphous state that are mixed therein.
Abstract:
A display device is configured that the common electrode wiring layer is divided in a source wiring layer direction, the metal wiring layer is disposed above the source wiring layer at a position in contact with the upper part of the common electrode wiring layer, and the metal wiring layer is not disposed at a position where the common electrode wiring layer is divided. Alternatively, the metal wiring layer is not disposed at a position between the same colors as those at the division position of the common electrode wiring layer.