Abstract:
A class-AB power amplifier according to the present embodiment includes an amplifying element whose power supply voltage is expressed as Vdc and whose maximum current is expressed as Imax, a conduction angle θo of the amplifying element being more than π(rad) and less than 2·π(rad), and load impedance of a fundamental wave being expressed as Z1=R1+j·X1, load impedance of a 2nd harmonic being expressed as Z2=R2+j·X2, and load impedance of a 3rd harmonic being expressed as Z3=R3+j−X3 which are observed from a dependent current source of an equivalent circuit of the amplifying element, and a relationship between variables X1 and R1 is set to −0.5·R1
Abstract:
According to one embodiment, provided is a package and high frequency terminal structure for the same including: a conductive base plate; a semiconductor device disposed on the conductive base plate; a metal wall disposed on the conductive base plate to house the semiconductor device; a through-hole disposed in input and output units of the metal wall; a lower layer feed through inserted into the through-hole and disposed on the conductive base plate; and an upper layer feed through disposed on the lower layer feed through, and adhered to a sidewall of the metal wall. The lower layer feed through is surrounded by the metal wall.
Abstract:
According to an embodiment, a power amplifier includes: an MMIC substrate; a high frequency probe pad disposed on the MMIC substrate; and a metal plate disposed on the MMIC substrate so as to adjoin to the high frequency probe pad, and connected to an MMIC external circuit via a bonding wire.
Abstract:
A stabilization network and a semiconductor device having the stabilization network wherein the stabilization network includes an active element having a negative resistance accompanying a high frequency negative resistance oscillation; and a tank circuit composed of a resistance connected to a main electrode of the active element, an inductance and capacitance which are connected in parallel with the resistance and synchronize with an oscillating frequency of the high frequency negative resistance oscillation, wherein the stabilization network is performed for suppressing a negative resistance accompanying a Gunn oscillation and obtaining stable and highly efficient power amplification.
Abstract:
According to an embodiment, a power amplifier includes: an MMIC substrate; a high frequency probe pad disposed on the MMIC substrate; and a metal plate disposed on the MMIC substrate so as to adjoin to the high frequency probe pad, and connected to an MMIC external circuit via a bonding wire.
Abstract:
A semiconductor device, which can prevent an element breakdown by alleviating of electric field concentrations, and can also prevent reduction of gain, includes: a source electrode formed on a semiconductor layer; a drain electrode formed on the semiconductor layer; a gate electrode formed between the source electrode and the drain electrode; an insulating film formed on the semiconductor layer and the gate electrode; a field plate electrode formed on the insulating film; and a resistor for connecting the field plate electrode and the source electrode.
Abstract:
According to one embodiment, there is a semiconductor device including a first active element, a second active element connected in parallel with the first active element, and a first stabilization circuit connected between a gate of the first active element and a gate of the second active element and configured with a parallel circuit of a gate bypass resistor, a gate bypass capacitor, and a gate bypass inductor, the first stabilization circuit having a resonant frequency equal to an odd mode resonant frequency.
Abstract:
According to one embodiment, provided are a package utilized for a high frequency semiconductor device and a fabrication method for such the package, the package including: a conductive base plate including a CTE control layer composed of compound material, and a heat conduction layer disposed on the CTE control layer and composed of Cu.
Abstract:
A semiconductor device which has low input inductance is provided.It includes: source finger electrodes (3) disposed by predetermined direction on the main substrate 1; drain finger electrodes (4) placed and disposed a predetermined interval to each of the source finger electrodes (3); gate finger electrodes (2) disposed between the source finger electrodes (3) and the drain finger electrodes (4), respectively; source pads (6) placed and disposed a predetermined interval at one side of finger electrode array; drain pads (7) disposed between the source pads (6); gate pads (5) which placed and disposed a predetermined interval at the another side of the finger electrode array; source electrode wirings (source bus-line LS, source bridge-line NS and source bridge-line M) for connecting the source finger electrodes (3) to the source pads (6); drain electrode wirings (drain bus-line LD, the drain bridge-line ND, and the drain bridge-line P) for connecting the drain finger electrodes (4) to the drain pads (7); and gate bus-lines for connecting the gate finger electrodes (2) to the gate pads (5).
Abstract:
According to one embodiment, there is a semiconductor device including a first active element, a second active element connected in parallel with the first active element, and a first stabilization circuit connected between a gate of the first active element and a gate of the second active element and configured with a parallel circuit of a gate bypass resistor, a gate bypass capacitor, and a gate bypass inductor, the first stabilization circuit having a resonant frequency equal to an odd mode resonant frequency.