Abstract:
In a method for producing at least at least one area (8) with reduced electrical conductivity within an electrically conductive III-V semiconductor layer (3), a ZnO layer (1) is applied to the area (8) of the semiconductor layer (3) and subsequently annealed at a temperature preferably between 300° C. and 500° C. The ZnO layer (1) is preferably deposited on the III-V semiconductor layer (3) at a temperature of less than 150° C., preferably at a temperature greater than or equal to 25° C. and less than or equal to 120° C. The area (8) with reduced electrical conductivity is preferably located in a radiation emitting optoelectronic device between the active zone (4) and a connecting contact (7) in order to reduce current injection into the areas of the active zone (4) located opposite to the connecting contact (7).
Abstract:
The invention describes a method for producing a reflective layer system and a reflective layer system for application to a III/V compound semiconductor material, wherein a first layer, containing phosphosilicate glass, is applied directly to the semiconductor substrate Disposed thereon is a second layer, containing silicon nitride. A metallic layer is then applied thereto.
Abstract:
A method for roughening a surface of a body (1), having the following steps of: coating the surface with a mask layer (2), applying preformed mask bodies (3) on the mask layer (2), etching through the mask layer (2) at locations not covered by mask bodies (3), and etching the body (1) at locations of its surface that are free of the mask layer (2).
Abstract:
A light-emitting semiconductor component has a semiconductor element containing an active layer, electrical contacts for impressing a current into the active layer (heat being generated at the active layer and at the electrical contacts during operation), and a carrier with a large thermal capacity for absorbing the heat generated during operation. The rear side of the semiconductor element is (electrically and/or thermally) connected to the carrier by a adhesive. Recesses, which accommodate a part of the adhesive when the semiconductor element is connected to the carrier, are provided in the rear side of the semiconductor element.
Abstract:
A radiation-emitting semiconductor chip (1) having a semiconductor layer sequence (3) comprising at least one active layer (2) that generates an electromagnetic radiation, and having an electrical contact layer (7) comprising a connection region (4) and a current injection region (5), which is arranged at a distance beside the connection region (4) and is electrically connected. In accordance with a first embodiment, an absorbent brightness setting layer (12) is applied between the connection region (4) and the current injection region (5) and/or, as seen from the connection region (4), outside the current injection region (5) on a front-side radiation coupling-out area (10) of the semiconductor layer sequence (3). The brightness setting layer absorbs in a targeted manner part of a radiation generated in the semiconductor layer sequence (3). In accordance with a second embodiment, a partly insulating brightness setting layer (6) is arranged between the connection region (4) and the active layer (2). The brightness setting layer comprises at least one electrically insulating current blocking region (62) and at least one electrically conductive current passage region (61) via which the connection region (4) is electrically conductively connected to the semiconductor layer sequence (3) in such a way that, during operation of the semiconductor chip (1), part of the electromagnetic radiation generated in the chip is generated below the connection region (4) and is absorbed by the latter. Methods for producing such semiconductor chips are furthermore specified.
Abstract:
A light-emitting semiconductor component having: a semiconductor element containing an active layer, electrical contacts for impressing a current into the active layer (heat being generated at the active layer and at the electrical contacts during operation), and a carrier with a large thermal capacity for absorbing the heat generated during operation. The rear side of the semiconductor element is electrically and thermally connected to the carrier by a conductive adhesive. Recesses, which accommodate a part of the conductive adhesive when the semiconductor element is connected to the carrier, are provided in the rear side of the semiconductor element.
Abstract:
A light-emitting diode (1) comprises a window layer (4) above an active layer (3), the window layer having edge webs (6) profiled in a sawtooth-shaped manner. Edge lines (11) with which the current is injected into the active layer (3) proceed above the edge webs (6). The light-emitting diode (1) is distinguished by an especially high output efficiency.
Abstract:
A semiconductor lighting device may include a substrate populated with at least one semiconductor light source, wherein at least one reflective surface region of the substrate is covered with a light-reflecting layer, and wherein the light-reflecting layer has an aluminum carrier coated in a reflection-intensifying manner.
Abstract:
A semiconductor lighting device may include a substrate populated with at least one semiconductor light source, wherein at least one reflective surface region of the substrate is covered with a light-reflecting layer, and wherein the light-reflecting layer has an aluminum carrier coated in a reflection-intensifying manner.
Abstract:
An optoelectronic component (1) is specified, comprising a connection carrier (2) on which a radiation-emitting semiconductor chip (3) is arranged, and a conversion element (4) fixed to the connection carrier (2). The conversion element (4) spans the semiconductor chip (3) in such a way that the semiconductor chip (3) is surrounded by the conversion element (4) and the connection carrier (2), and the conversion element (4) consists of one of the following materials: ceramic, glass ceramic.