Abstract:
A method of making an image-based product includes providing an image collection having a plurality of digital images, each digital image having an image type; providing one or more image-type distributions, each image-type distribution corresponding to a theme and including a distribution of image types related to the theme; using a processor to automatically compare the image types of the digital images in the image collection to the image types in the image-type distribution; using the processor to automatically determine a match between the image types in the image collection and the image types in the image-type distribution; and selecting a group of digital images from the image collection having a distribution of image types specified by the determined matching image-type distribution. The method further includes assembling the digital images in the selected group of images into an image-based product and causing the construction of the image-based product.
Abstract:
An electronic device includes a support having greater than 80% transmittance to light at 550 nm; and a transparent conductor area provided over at least a portion of one side of the support. The transparent conductor area includes: first metallic micro-wires provided in a first pattern, the first conductive micro-wires having a first height and a width in a range from 0.5 um to 20 um; second metallic micro-wires provided in a second pattern having a second height that is greater than the first height and a width in a range from 0.5 um to 20. The metallic micro-wires occupy an area less than 15% of the transparent conductor area.
Abstract:
A method of making a multi-layer micro-wire structure includes providing a substrate having a surface and forming a plurality of micro-channels in the surface. A first material composition is located in a first layer only in each micro-channel and not on the surface. A second material composition different from the first material composition is located in a second layer different from the first layer only in each micro-channel and not on the surface. The first material composition in the first layer and the second material composition in the second layer form an electrically conductive multi-layer micro-wire in each micro-channel.
Abstract:
A variable-depth micro-channel structure includes a substrate. A cured layer is formed on the substrate. A micro-channel embossed in the cured layer has a bottom surface defining two or more different micro-channel depths of the micro-channel. A cured electrical conductor forms a micro-wire in the micro-channel over the bottom surface of the micro-channel and extends across at least a portion of the bottom surface of the micro-channel.
Abstract:
A pattern of micro-wires forming an electrical conductor includes a plurality of spaced-apart first micro-wires extending in a first direction. A plurality of spaced-apart second micro-wires extends in a second direction different from the first direction. Each second micro-wire is electrically connected to at least two first micro-wires and at least one second micro-wire has a width less than at least one of the widths of the first micro-wires.
Abstract:
A method for making a media collection associated with an event having an event location, includes receiving a specification of members in a group; using a processor to receive one or more media elements from each of a plurality of media-capture devices, each media element having a capture location; defining the event in response to receiving one or more media-capture-device signals having the event location from group members; and associating media elements having the event location received at the same time or after the event definition with a stored media event collection corresponding to the event for subsequent use.
Abstract:
A method of making an electronic storage system includes receiving a substrate and a circuit template. A transceiver including a transceiver substrate separate from the substrate is disposed over the substrate. The transceiver includes an output electrical-connection pad, and a plurality of input electrical-connection pads. A circuit template is disposed over the substrate so that at least one of the conductors of the circuit template is electrically connected to the output pad and at least one of the conductors of the circuit template is electrically connected to each of the input pads. At least one electrically-conductive strap is printed over the substrate so that each strap electrically connects the output pad to the at least one of the input pads through at least two of the conductors of the circuit template.
Abstract:
A method of making a transparent capacitor apparatus includes: providing a first transparent substrate including a first patterned conductive layer having a first pattern; providing a second transparent substrate including a second patterned conductive layer having a second pattern different from the first pattern; locating the first transparent substrate over the second transparent substrate so that the first patterned conductive layer is effectively parallel to the second patterned conductive layer. Overlapping portions of both the first conductive layer and the second conductive layer are patterned time into spatially matching conductive areas and non-conductive areas by locally applying heat to melt conductive materials in the non-conductive areas so that the surface tension of the conductive materials causes the conductive materials to coalesce into structures with a reduced conductive layer area.
Abstract:
A method of making a micro-louver structure includes coating a curable layer on a surface and imprinting a pattern of micro-channels in the curable layer. The micro-channels have a greater depth than width and are spaced apart by a separation distance greater than the width. The curable layer is at least partially cured to form a cured layer. A light-absorbing material is coated over the cured layer and in the micro-channels and at least a portion of the light-absorbing material removed from the surface of the cured layer leaving at least a portion of the light-absorbing material in the micro-channels. The light-absorbing material is cured to form a light-absorbing structure in each micro-channel.
Abstract:
A display device includes a display having an array of pixels formed on a display layer, the pixels arranged into rows and columns. Two or more electrodes are located over the display layer on an electrode layer different from the display layer and extend across at least a portion of the array of pixels. Each electrode extends exclusively over all of the pixels in a row or column.