Abstract:
Method and system for forming an anhydrous sterilant. In one embodiment, anhydrous peracetic acid is combined with carbon dioxide, wherein the carbon dioxide is in one of a liquid, solid, and supercritical state.
Abstract:
Heavy hydrocarbons are upgraded more efficiently to lighter, more valuable, hydrocarbons with lower amounts of solid carbonaceous by-products in supercritical water using two heating stages, the first stage at a temperature up to about 775K and the second stage at a temperature from about 870K to about 1075K. The temperature is preferably raised from the first temperature to the second temperature by internal combustion using oxygen.
Abstract:
A process for upgrading whole crude oil utilizing a recovery fluid, depressurizing an extracted whole crude oil/recovery fluid mixture in a step-wise fashion, and subsequently contacting at least a portion of the whole crude oil with supercritical water fluid to produce high value crude oil having low sulfur, low nitrogen, and low metallic impurities for use as hydrocarbon feedstock.
Abstract:
A technique for bonding an organic group with the surface of fine particles such as nanoparticles through strong linkage is provided, whereas such fine particles are attracting attention as materials essential for development of high-tech products because of various unique excellent characteristics and functions thereof. Organically modified metal oxide fine particles can be obtained by adapting high-temperature, high-pressure water as a reaction field to bond an organic matter with the surface of metal oxide fine particles through strong linkage. The use of the same condition enables not only the formation of metal oxide fine particles but also the organic modification of the formed fine particles. The resulting organically modified metal oxide fine particles exhibit excellent properties, characteristics and functions.
Abstract:
The invention intends to provide a material that exhibits excellent corrosion resistance to supercritical ammonia and is suitable for a supercritical ammonia reactor.An Ni-based corrosion resistant alloy includes from 15% or more to 50% or less by mass of Cr and any one or both of Mo and W, wherein a [(content of Mo)+0.5×(content of W)] is from 1.5% or more to 8.5% or less by mass, a value of 1.8×[% content of Cr]/{[% content of Mo]+0.5×[% content of W]} is from 3.0 or more to 70.0 or less and the balance is Ni and an unavoidable impurity. Preferably, content of Fe is less than 3% by mass, and content of C is less than 0.05% by mass. The alloy is used to configure a supercritical ammonia reactor or the material is coated on a surface that contacts with a supercritical ammonia fluid. The alloy exhibits excellent corrosion resistance to supercritical ammonia and a mineralizer added the supercritical ammonia. The safety and reliability of an apparatus can be improved, the producing cost can be reduced, the apparatus lifetime can be extended and the running cost can be reduced.
Abstract:
A method of decomposing a polycarbonate with water in a supercritical or subcritical state. A high-purity dihydroxy compound which is a constituent component of the polycarbonate can be recovered at a high yield by this decomposition method. This decomposition method is environment-friendly because it does not use an organic solvent, easy to be carried out, has a high decomposition rate and rarely causes a side reaction.
Abstract:
Process for polymerizing at least one olefinic monomer in a loop reactor at from 20 to 150° C., but below the melting point of the polymer to be formed, and a pressure of from 5 to 100 bar, where the polymer formed is present in a suspension in a liquid or supercritical suspension medium and this suspension is circulated by means of an axial pump, wherein the loop reactor comprises a cyclic reactor tube whose diameter varies by at least 10%, based on the predominant reactor tube diameter, and in which there is at least one widening and narrowing in a region other than that of the axial pump.
Abstract:
A two-tube centrifuge separates light material and heavy material from an input mixture. A hollow drive shaft rotates a central body member about an axis of rotation. Two hollow arm assemblies, each having circular cross-section, are mounted on diametrically opposite sides of the central body. Each arm assembly includes an outer housing tube, an intermediate tube, and an inner tube that is longer than the intermediate tube. An end cap having a removable plug is mounted on the outer end of the housing-tube of each arm assembly. The inner ends of all three tubes are mechanically interlocked in a manner to cantilever mount the inner and intermediate tubes to the central-body with their outer ends spaced from the internal surface of the end cap. An input-mixture path extends through the hollow drive shaft, through the central-body, and into a cylindrical space between the inner and intermediate tubes of each arm assembly. A heavy material exit path extends from the inner tube, through the central body, and into an exit cone that lies diametrically opposite the drive shaft and whose axis is coincident with the axis of rotation. A light material exit path extends from a cylindrical space between the inner and intermediate tubes, through the central-body, and through a wall of the exit cone. The inner tube of each arm assembly includes an auger. An electric motor drives the drive shaft. A hydraulic motor drives the auger. An oxidation reactor in a centrifuge for decanting lighter material from heavier material from a mixture of initial material and to perform an oxidation reaction process on the heavier material.
Abstract:
A reactor for treating a material in a medium. It includes a body (2) in which is defined a reaction area (10) capable of containing a reaction medium, at least one inlet for introducing the reaction medium into the reaction area, one outlet for discharging effluents out of the reaction area. A protective casing (8) positioned inside the body (2) delimits the reaction area (10). It is spaced apart from the body in order to delimit a confinement area (12) isolating the reaction area of the body. The reaction area and the confinement area are sealably isolated from each other.
Abstract:
A method for preparing composite microspheres of a high-molecular material and a core substance includes the steps of: dissolving a high-molecular material and dispersing a core substance in a high pressure fluid containing a supercritical fluid and an entrainer, under a shear stress of 1 Pa or more; and spraying the resultant high pressure fluid containing the high-molecular material and the core substance into a poor solvent to cause rapid expansion. According to the method composite microspheres having a uniform size of several micrometers or less, and more preferably nanometer order (a size of 1 μm or less) can be obtained.