Abstract:
A method for manufacturing a powder magnetic core using a soft magnetic material powder, wherein the method has: a first step of mixing the soft magnetic material powder with a binder, a second step of subjecting a mixture obtained through the first step to pressure forming, and a third step of subjecting a formed body obtained through the second step to heat treatment. The soft magnetic material powder is an Fe—Cr—Al based alloy powder comprising Fe, Cr and Al. An oxide layer is formed on a surface of the soft magnetic material powder by the heat treatment. The oxide layer has a higher ratio by mass of Al to the sum of Fe, Cr and Al than an alloy phase inside the powder.
Abstract:
A method for gas atomization of a titanium alloy, nickel alloy, or other alumina (Al2O3)-forming alloy wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a passivation reaction film on the atomized particles wherein the reaction film retains a precursor halogen alloying element that is subsequently introduced into a microstructure formed by subsequent thermally processing of the atomized particles to improve oxidation resistance.
Abstract translation:一种用于钛合金,镍合金或其它氧化铝(Al 2 O 3)形成合金的气体雾化的方法,其中雾化颗粒在非常短的时间内固化和冷却时暴露于多种气态反应剂以便原位形成 雾化颗粒上的钝化反应膜,其中反应膜保留前体卤素合金元素,其随后引入通过随后的雾化颗粒的热加工形成的微结构中以提高耐氧化性。
Abstract:
A process for producing an FePt-based sputtering target includes adding metal oxide powder containing unavoidable impurities to FePt-based alloy powder containing Pt in an amount of 40 at % or more and less than 60 at % and one or more kinds of metal elements other than Fe and Pt in an amount of more than 0 at % and 20 at % or less with the balance being Fe and unavoidable impurities and with a total amount of Pt and the one or more kinds of metal elements being 60 at % or less so that the metal oxide powder accounts for 20 vol % or more and 40 vol % or less of a total amount of the FePt-based alloy powder and the metal oxide powder, followed by mixing the FePt-based alloy powder and the metal oxide powder to produce a powder mixture.
Abstract:
An FePt-based sputtering target has a structure in which an FePt-based alloy phase, a C phase containing unavoidable impurities, and a metal oxide phase containing unavoidable impurities are mutually dispersed, the FePt-based alloy phase containing Pt in an amount of 40 at % or more and 60 at % or less with the balance being Fe and unavoidable impurities, wherein C is contained in an amount of more than 0 vol % and 20 vol % or less based on the total amount of the target, the metal oxide is contained in an amount of 10 vol % or more and less than 40 vol % based on the total amount of the target, and the total content of C and the metal oxide is 20 vol % or more and 40 vol % or less based on the total amount of the target.
Abstract:
An FePt—C-based sputtering target contains Fe, Pt, and C and has a structure in which an FePt-based alloy phase and a C phase containing unavoidable impurities are mutually dispersed, the FePt-based alloy phase containing Pt in an amount of 40 at % or more and 60 at % or less with the balance being Fe and unavoidable impurities. The content of C is 21 at % or more and 70 at % or less based on the total amount of the target.
Abstract:
A lunar dust simulant containing nanophase iron and a method for making the same. Process (1) comprises a mixture of ferric chloride, fluorinated carbon powder, and glass beads, treating the mixture to produce nanophase iron, wherein the resulting lunar dust simulant contains α-iron nanoparticles, Fe2O3, and Fe3O4. Process (2) comprises a mixture of a material of mixed-metal oxides that contain iron and carbon black, treating the mixture to produce nanophase iron, wherein the resulting lunar dust simulant contains α-iron nanoparticles and Fe3O4.
Abstract translation:含有纳米相铁的月球粉尘模拟物及其制造方法。 方法(1)包括氯化铁,氟化碳粉末和玻璃珠的混合物,处理该混合物以产生纳米相铁,其中所得月球粉尘模拟物含有α-铁纳米颗粒,Fe 2 O 3和Fe 3 O 4。 方法(2)包括含有铁和炭黑的混合金属氧化物的混合物,处理该混合物以产生纳米相铁,其中所得月球粉尘模拟物含有α-铁纳米颗粒和Fe 3 O 4。
Abstract:
A method of manufacturing powder metal plates comprising feeding a predetermined mass of metal powder onto a moving tape (101), restricting the metal powder by surrounding the metal powder with vibrating boundary walls (201, 202) extending parallel to the direction of movement of the tape, rolling the metal powder at an ambient temperature to form a green compact strip (GS), continuously sintering the green compact strip in a furnace (400), forming the green compact strip to a net shape part (NS) while in the furnace, and cooling the net shape part in a non-oxidizing environment (404) at a temperature in excess of 1000 degrees Celsius.
Abstract:
An improved method of reducing a mixed metal oxide composition comprising oxides of nickel, cobalt, copper and iron in a hydrogen atmosphere to produce a mixture of the respective metals, the improvement wherein the atmosphere further comprises water vapour at a concentration, temperature and time to effect selective reduction of the oxides of nickel cobalt and copper relative to the iron oxide to produce the metallic mixture having a reduced ratio of metallic iron relative to metallic nickel, cobalt and copper.
Abstract:
The present invention encompasses methods and apparatus for creating metal nanoparticles embedded in a carbonaceous char, the conversion of an carbonaceous char with embedded metallic nanoparticles to graphite-encased nano-sized metal particles surrounded by char, the separation of the graphite encased metal particles from the char matrix, and the related preparation and isolation of carbon nanosphere materials with or without the enclosed metal nanoparticles, and the uses of such carbon nanospheres and graphite enclosed metal nanoparticles as supports and enhancers for fuel cell electrocatalysts and other applications.
Abstract:
A ferromagnetic metal powder for a magnetic recording medium that combines good magnetic properties and oxidation stability, and a magnetic recording medium using the powder. A method of producing the magnetic powder comprises using oxygen to form an oxide film, then changing the state of the oxide film by using moderate gas phase activation treatment in an active gas, using, for example, CO or H2 or other such gas having reducing properties. ESCA-based measurements show that the binding energy peak of the powder is more to the low energy side compared to when the above treatment is not used, showing that the oxide film has oxidation resistance. The storage stability of a magnetic recording medium is improved by using the powder.