Abstract:
A vertical takeoff and landing (VTOL) air vehicle disclosed. The air vehicle can be manned or unmanned. In one embodiment, the air vehicle includes two shrouded propellers, a fuselage and a gyroscopic stabilization disk installed in the fuselage. The gyroscopic stabilization disk can be configured to provide sufficient angular momentum, by sufficient mass and/or sufficient angular velocity, such that the air vehicle is gyroscopically stabilized during various phases of flight. In one embodiment the fuselage is fixedly attached to the shrouded propellers. In another embodiment, the shrouded propellers are pivotably mounted to the fuselage.
Abstract:
A small, reusable interceptor unmanned air vehicle (UAV), an avionics control system for the UAV, a design method for the UAV and a method for controlling the UAV, for interdiction of small scale air, water and ground threats. The UAV includes a high performance airframe with integrated weapon and avionics platforms. Design of the UAV first involves the selection of a suitable weapon, then the design of the interceptor airframe to achieve weapon aiming via airframe maneuvering. The UAV utilizes an avionics control system that is vehicle-centric and, as such, provides for a high degree of autonomous control of the UAV. A situational awareness processor has access to a suite of disparate sensors that provide data for intelligently (autonomously) carrying out various mission scenarios. A flight control processor operationally integrated with the situational awareness processor includes a pilot controller and an autopilot controller for flying and maneuvering the UAV.
Abstract:
An aircraft for carrying at least one rigid cargo container includes a beam structure with a forward fuselage attached to the forward end of the beam structure and an empennage attached to the rearward end of the beam structure. Wings and engines are mounted relative to the beam structure and a fairing creates a cargo bay able to receive standard sized intermodal cargo containers. Intermodal cargo containers of light construction and rigid structure are positioned within the cargo bay and securely mounted therein. The beam structure is designed to support flight, takeoffs and landings when the aircraft is empty but requires the added strength of the containers securely mounted to the beam structure when the aircraft is loaded. The aircraft is contemplated to be a drone.
Abstract:
A transmission system that is used in conjunction with a microturbine engine for propelling an aircraft body, such as a propeller-based fixed-wing aircraft or a rotor-based vertical lift aircraft, or for a wide variety of other applications. The output shaft of the microturbine engine preferably operates at a rotational speed in a range between 72,000 RPM and 150,000 RPM with an output power between 150 HP and 5 HP (and most preferably operates in an extended range between 50,000 RPM and 200,000 RPM with an output power between 200 HP and 5 HP). The two reduction stages provide a reduction ratio preferably having a value of at least 19, and most preferably greater than 24. The transmission system is of small-size preferably having a maximum diameter less than twelve inches. The two stages of the transmission system may comprise any one (or parts of) of a number of configurations, including an in-line lay shaft configuration, an in-line star-star configuration, an offset star-spur configuration, an offset compound idler configuration, an inline traction-internal gear configuration, and an inline traction-planetary gear configuration. Preferably, the input stage of the transmission system is self-equilibrating such that first shaft can be supported without bearings and is operably coupled to the output shaft of the microturbine engine by an outside diameter piloted spline coupling mechanism. For vertical lift applications, a single traction stage along with a bevel gear assembly or other shaft transmission mechanism can be used to provide the necessary RPM reduction.
Abstract:
An air vehicle assembly and a corresponding method for launching an air vehicle assembly are provided, along with corresponding control systems and methods. The air vehicle assembly may include a plurality of air vehicles releasably joined to one another during a portion of the flight, such as during take-off and landing. By being releasably joined to one another, such as during take-off and landing, the air vehicles can rely upon and assist one another during the vertical take-off and landing while being designed to have a greater range and higher endurance following the transition to forward flight, either while remaining coupled to or following separation from the other air vehicles. By taking into account the states of the other air vehicles, the control system and method also permit the air vehicles of an air vehicle assembly to collaborate.
Abstract:
A method of launching and retrieving a UAV (Unmanned Aerial Vehicle) (10). The preferred method of launch involves carrying the UAV (10) up to altitude using a parasail (8) similar to that used to carry tourists aloft. The UAV is dropped and picks up enough airspeed in the dive to perform a pull-up into level controlled flight. The preferred method of recovery is for the UAV to fly into and latch onto the parasail tow line (4) or cables hanging off the tow line and then be winched back down to the boat (2).
Abstract:
An air vehicle assembly and a corresponding method for launching an air vehicle assembly are provided, along with corresponding control systems and methods. The air vehicle assembly may include a plurality of air vehicles releasably joined to one another during a portion of the flight, such as during take-off and landing. By being releasably joined to one another, such as during take-off and landing, the air vehicles can rely upon and assist one another during the vertical take-off and landing while being designed to have a greater range and higher endurance following the transition to forward flight, either while remaining coupled to or following separation from the other air vehicles. By taking into account the states of the other air vehicles, the control system and method also permit the air vehicles of an air vehicle assembly to collaborate.
Abstract:
Methods and apparatuses for launching unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be launched from an apparatus that includes a launch carriage that moves along a launch guide. The carriage can accelerate when portions of the carriage and/or the launch guide move relative to each other. A gripper carried by the launch carriage can have at least one grip portion in contact with the aircraft while the launch carriage accelerates along the launch axis. The at least one grip portion can move out of contact with the aircraft as the launch carriage decelerates, releasing the aircraft for takeoff. A brake can arrest the motion of the gripper after launch.
Abstract:
Methods and apparatuses for supporting aircraft components, including actuators are disclosed. An apparatus in accordance with one embodiment of the invention includes an actuator housing having an actuator receptacle that securely yet releasably receives an actuator. The actuator receptacle can include conformal walls that conform at least in part to the shape of the actuator and can accordingly squeeze the actuator and properly align the actuator. At least one of the actuator walls can further include a projection that is releasably received in a corresponding recess of the actuator. One of both of these features can releasably secure the actuator relative to the aircraft, reducing and/or eliminating the likelihood that the actuator will be misaligned and/or mispositioned relative to the aircraft during installation and/or replacement.
Abstract:
An in-flight refueling system for an unmanned aircraft is responsive to sensed forces acting on a refueling receptacle of the aircraft by a separate refueling probe, to control movements of the aircraft as it is being refueled to reduce the magnitude of the sensed forces and thereby maintain the coupling of the aircraft with the refueling probe.