Abstract:
A wearable safety alarm system includes one or more processors to receive identifying information and transmit the identifying information to an alarm response server from a mobile computing device, receive, by the mobile computing device, a unique identifier that identifies the identifying information in database associated with the alarm response server, receive a trigger of an alarm notification by one of a wearable device and the mobile computing device, determine a current location of the mobile computing device, transmit an alarm notification message to the alarm response server, the alarm notification message including the current location of the mobile computing device and the unique identifier, and transmit the current location of the mobile computing device to at least one drone.
Abstract:
A system comprising an aerial vehicle or an unmanned aerial vehicle (UAV) (100, 400, 1000, 1500) configured to control pitch, roll, and/or yaw via airfoils (141, 142, 1345, 1346) having resiliently mounted trailing edges opposed by fuselage-house deflecting actuator horns (621, 622). Embodiments include one or more rudder elements (1045, 1046, 1145, 1146, 1245, 1345, 1346, 1445, 1446, 1545, 1546) which may be rotatably attached and actuated by an effector member (1049, 1149, 1249, 1349) disposed within the fuselage housing (1001) and extendible in part to engage the one or more rudder elements.
Abstract:
One variation of a method for imaging an area of interest includes: within a user interface, receiving a selection for a set of interest points on a digital map of a physical area and receiving a selection for a resolution of a geospatial map; identifying a ground area corresponding to the set of interest points for imaging during a mission; generating a flight path over the ground area for execution by an unmanned aerial vehicle during the mission; setting an altitude for the unmanned aerial vehicle along the flight path based on the selection for the resolution of the geospatial map and an optical system arranged within the unmanned aerial vehicle; setting a geospatial accuracy requirement for the mission based on the selection for the mission type; and assembling a set of images captured by the unmanned aerial vehicle during the mission into the geospatial map.
Abstract:
A system comprising an aerial vehicle or an unmanned aerial vehicle (UAV) configured to control pitch, roll, and/or yaw via airfoils having resiliently mounted trailing edges opposed by fuselage-house deflecting actuator horns. Embodiments include one or more rudder elements which may be rotatably attached and actuated by an effector member disposed within the fuselage housing and extendible in part to engage the one or more rudder elements.
Abstract:
A tethering system for a remote-controlled device includes a tether line having a first end adapted to be connected to a ground support and a second end adapted to be connected to the remote-controlled device. The system further includes an anchor-point disposed between the first and second ends of the tether line, the anchor point having an eyelet for securing the tether line and allowing the tether line to slide through the eyelet during use. The anchor-point and eyelet enable the tether line to flex or bend and the remote-controlled device to maneuver one or more of over or around the target area without interfering with any nearby obstructions.
Abstract:
Embodiments described herein may relate to an unmanned aerial vehicle (UAV) navigating to a medical situation in order to provide medical support. An illustrative method involves a UAV (a) determining an approximate target location associated with a medical situation, (b) using a first navigation process to navigate the UAV to the approximate target location, where the first navigation process generates flight-control signals based on the approximate target location, (c) making a determination that the UAV is located at the approximate target location, and (d) in response to the determination that the UAV is located at the approximate target location, using a second navigation process to navigate the UAV to the medical situation, wherein the second navigation process generates flight-control signals based on real-time localization of the medical situation.
Abstract:
An actual position of a load tethered with a tether to a vehicle is determined using a plurality of sensors disposed on the vehicle. A required tether tension and required tether angle of the tether is determined to move the load from the actual position to a commanded position. An actual tether tension and actual tether angle of the tether is determined using the plurality of sensors. A determination is made as to a thrust vector to be applied by the vehicle to change the actual tether tension and the actual tether angle of the tether to the required tether tension and the required tether angle. The thrust vector is applied with the vehicle to reposition the vehicle to achieve the required tether angle and to create the required tether tension of the tether to move the load to the commanded position.
Abstract:
Extended-range monitoring and surveillance of facilities and infrastructure—such as oil, water, and gas pipelines and power lines—employs autonomous vertical take-off and landing (VTOL) capable, small unmanned aerial system (sUAS) aircraft and docking platforms for accommodating the sUAS aircraft. Monitoring and surveillance of facilities using one or more embodiments may be performed continually by the sUAS flying autonomously along a pre-programmed flight path. The sUAS aircraft may have an integrated gas collector and analyzer unit, and capability for downloading collected data and analyzer information from the sUAS aircraft to the docking platforms. The gas collector and analyzer unit may provide remote sensing and in-situ investigation of leaks and other environmental concerns as part of a “standoff” (e.g., remote from operators of the system or the facilities) survey that can keep field operators out of harm's way and monitor health of the environment.
Abstract:
One variation of a method for imaging an area of interest includes: within a user interface, receiving a selection for a set of interest points on a digital map of a physical area and receiving a selection for a resolution of a geospatial map; identifying a ground area corresponding to the set of interest points for imaging during a mission; generating a flight path over the ground area for execution by an unmanned aerial vehicle during the mission; setting an altitude for the unmanned aerial vehicle along the flight path based on the selection for the resolution of the geospatial map and an optical system arranged within the unmanned aerial vehicle; setting a geospatial accuracy requirement for the mission based on the selection for the mission type; and assembling a set of images captured by the unmanned aerial vehicle during the mission into the geospatial map.
Abstract:
A method and system for navigating an unmanned aerial vehicle (UAV) for aerial refueling is described. A system processor in the UAV receives navigation data from a tanker aircraft and calculates a plurality of relative navigation solutions with respect to the tanker aircraft. The system processor compares the plurality of relative navigation solutions to identify any inconsistent solutions. The inconsistent solutions are discarded and the system processor navigates the UAV in position for refueling using the remaining relative navigation solutions.