Abstract:
A tethering system for a remote-controlled device includes a tether line having a first end adapted to be connected to a ground support and a second end adapted to be connected to the remote-controlled device. The system further includes an anchor-point disposed between the first and second ends of the tether line, the anchor point having an eyelet for securing the tether line and allowing the tether line to slide through the eyelet during use. The anchor-point and eyelet enable the tether line to flex or bend and the remote-controlled device to maneuver one or more of over or around the target area without interfering with any nearby obstructions.
Abstract:
A system that includes a ground unit that includes: a takeoff and landing platform; a landing and takeoff assisting module; and a housing. The takeoff and landing platform is arranged to hold and support an aerial unit during a first part of a landing process of the aerial unit and a first part of takeoff process of the aerial unit. The aerial unit is coupled to the ground unit via a connecting element. The effective length of the connecting element increases during the takeoff process and decreases during the landing process. The landing and takeoff assisting module is coupled to the takeoff and landing platform and is arranged to (a) lower the takeoff and landing platform into the housing during a second part of the landing process and (b) elevate the takeoff and landing platform during a second part of the takeoff process.
Abstract:
A method involves operating an aerial vehicle in a hover-flight orientation. The aerial vehicle is connected to a tether that defines a tether sphere having a radius based on a length of the tether, and the tether is connected to a ground station. The method involves positioning the aerial vehicle at a first location that is substantially on the tether sphere. The method involves transitioning the aerial vehicle from the hover-flight orientation to a forward-flight orientation, such that the aerial vehicle moves from the tether sphere. And the method involves operating the aerial vehicle in the forward-flight orientation to ascend at an angle of ascent to a second location that is substantially on the tether sphere. The first and second locations are substantially downwind of the ground station.
Abstract:
A method may involve operating an aerial vehicle to travel along a first closed path on a tether sphere while oriented in a crosswind-flight orientation. A tether may be connected to the aerial vehicle on a first end and may be connected to a ground station on a second end. Further, the tether sphere may have a radius corresponding to a length of the tether. The method may further involve while the aerial vehicle is in the crosswind-flight orientation, operating the aerial vehicle to travel along a second closed path on the tether sphere, such that a speed of the aerial vehicle is reduced. And the method may involve after or while the speed of the aerial vehicle is reduced, transitioning the aerial vehicle from traveling along the second closed path while in the crosswind-flight orientation to a hover-flight orientation.
Abstract:
An aerial unit, a method and a system are provide, the system includes a ground unit; an aerial unit and a connecting element arranged to connect the ground unit to the aerial unit. The ground unit may include a connecting element manipulator, a ground unit controller for controlling the connecting element manipulator; and a ground unit location sensor arranged to generate ground unit location information indicative of a location of the ground unit. The wherein the aerial unit may include a first propeller, a frame, a first propeller motor, at least one steering element; and an aerial unit location sensor arranged to generate aerial unit location information indicative of a location of the aerial unit. At least one of the ground unit and the aerial unit includes a controller that is arranged to control, at least in response to a relationship between the aerial unit location information and the ground unit location information, at least one of the first propeller motor and the at least one steering element to affect at least one of the location of the aerial unit and an orientation of the aerial unit.
Abstract:
Wind energy systems, such as an Airborne Wind Turbine (“AWT”), may be used to facilitate conversion of kinetic energy to electrical energy. An AWT may include an aerial vehicle that flies in a path to convert kinetic wind energy to electrical energy. The aerial vehicle may be tethered to a ground station with a tether that terminates at a tether termination mount. In one aspect, the tether may be a conductive tether that can transmit electricity and/or electrical signals back and forth between the aerial vehicle and the ground station. The tether termination mount may include one or more gimbals that allow for the tether termination mount to rotate about one or more axis. In a further aspect, the tether termination mount may include a slip ring that allows for rotation of the tether without twisting the tether.
Abstract:
A system for high temporal and high spatial resolution monitoring of a field of plants is disclosed. Illustratively, the system includes a plurality of ground based reference objects, a balloon adapted to be positioned above the field of plants, and a balloon positioning system coupled to the balloon and configured to position the balloon relative to the field of plants. An imaging system is supported by the balloon and includes a locations system, at least one camera, and at least one gimbal configured to orient the at least one camera. The imaging system captures at least one image of the field of plants including the plurality of ground based reference objects in the at least one image.
Abstract:
A method may involve operating an aerial vehicle in a hover-flight orientation. The aerial vehicle may be connected to a tether that defines a tether sphere having a radius based on a length of the tether, and the tether may be connected to a ground station. The method may involve positioning the aerial vehicle at a first location that is substantially on the tether sphere. The method may involve transitioning the aerial vehicle from the hover-flight orientation to a forward-flight orientation, such that the aerial vehicle moves from the tether sphere. And the method may involve operating the aerial vehicle in the forward-flight orientation to ascend at an angle of ascent to a second location that is substantially on the tether sphere. The first and second locations may be substantially downwind of the ground station.
Abstract:
An aerial platform receives power in the form of light, for example laser light, transmitted via an optical fiber from a remote optical power source. The platform comprises a receiver which converts at least a portion of the light to a different form of power, for example electric power. The platform also comprises a propulsion element which consumes the different form of power to generate propulsive thrust. Supplying power to the aerial platform from a remote source enables the platform to remain aloft longer than a battery or fuel tank carried by the platform would allow. Transmitting the power in the form of light is preferable in many cases to transmitting electric power, because electrical conductors are generally heavier than optical fibers, and are hazardous in the presence of lightning or a high-voltage power line.
Abstract:
An electrically powered of the vertical takeoff and landing aircraft configured for use with a tether station having a continuous power source is provided including at least one rotor system. The vertical takeoff and landing aircraft additionally has an autonomous flight control system coupled to the continuous power source. The autonomous flight control system is configured to operate an electrical motor coupled to the at least one rotor system such that the vertical takeoff and landing aircraft continuously hovers above the tether station in a relative position. The vertical takeoff and landing aircraft also includes a detection system for detecting objects at a distance from the vertical takeoff and landing aircraft.