Abstract:
A mirror assembly includes a frame having a central opening and a mirror plate, which is contained within the central opening of the frame and is shaped to define separate first and second mirrors connected by a bridge extending between the first and second mirrors. A pair of hinges are connected between the frame and the mirror plate at locations on the central axis on opposing sides of the frame so as to enable rotation of the mirror plate about the central axis relative to the frame.
Abstract:
A MEMS micro-mirror assembly (250, 300, 270, 400) comprising, a MEMS device (240) which comprises a MEMS die (241) and a magnet (231); a flexible PCB board (205) to which the MEMS device (240) is mechanically, and electrically, connected; wherein the flexible PCB board (205) further comprises a first extension portion (205b) which comprises a least one electrical contact (259a,b) which is useable to electrically connect the MEMS micro-mirror assembly (250, 300, 270, 400) to another electrical component). There is further provided a projection system comprising such a MEMS micro-mirror assembly (250, 300, 270, 400).
Abstract:
Provided is a micro drive unit, which is capable of performing multi-axis drive, the micro drive unit including: a movable object; and at least one pair of beams configured to pivotally support the movable object and formed only in one direction, the movable object being configured to rotate or translate in an x-axis direction, a y-axis direction, and a z-axis direction when the at least one pair of beams is twisted or bent at one or a plurality of resonant frequencies of the at least one pair of beams, thereby being capable of simultaneously avoiding upsizing and complication of the structure. And by incorporating the micro drive unit, a micro device capable of achieving multi-axis drive can be manufactured.
Abstract:
A method for monitoring includes providing a device (64) including a first part (46) and a second part (72) and a movable joint (70) connecting the first part to the second part. An electrical characteristic of a conductive path (80) crossing the movable joint is measured, and a remedial action is initiated in response to detecting a change of the electrical characteristic.
Abstract:
A method of forming a semiconductor device includes depositing a light reflecting layer over a substrate. The method also includes forming a protection layer over the light reflecting layer. The method further includes forming an anti-reflective coating (ARC) layer over the protection layer. The method additionally includes forming an opening in the ARC layer, the protection layer and the light reflecting layer exposing the substrate. The method also includes removing the ARC layer in a wet solution comprising H2O2, the ARC layer being exposed to the H2O2 at a flow rate greater than about 10 standard cubic centimeters per minute (sccm).
Abstract translation:形成半导体器件的方法包括在衬底上沉积光反射层。 该方法还包括在光反射层上形成保护层。 该方法还包括在保护层上形成抗反射涂层(ARC)层。 该方法还包括在ARC层中形成开口,保护层和曝光衬底的光反射层。 该方法还包括在包含H 2 O 2的湿溶液中去除ARC层,ARC层以大于约10标准立方厘米每分钟(sccm)的流速暴露于H 2 O 2。
Abstract:
A manufacturing method of a microelectromechanical system (MEMS) package structure includes providing a base, wherein the base comprises a recess; disposing a chip in the recess, wherein the chip has an active surface; disposing a MEMS device on the active surface in the recess, wherein the MEMS device is covered by a first cover, the first cover comprises a cavity, and the MEMS device is in the cavity; disposing a sealant at a peripheral gap between the chip and the first cover so as to seal the cavity; disposing a glass frit on a second cover or the base; disposing the second cover on the base, wherein the second cover covers the recess, and the glass frit is disposed between the base and the second cover; and heating the glass frit so as to seal the recess.
Abstract:
A method for forming an anti-stiction coating on a surface of a semiconductor device is provided. Using atomic layer deposition (ALD) processes to activate surface prior to anti-stiction coating deposition, anti-stiction coating having strong chemical bonding to the surface is obtained.
Abstract:
A spatial light modulation element module having a large area is manufactured. A spatial light modulation element module comprising a base member and a plurality of spatial light modulation element arrays, wherein each of the plurality of spatial light modulation element arrays has a light modulation element which modulates and emits at least one of the intensity and the phase of an incident light, and the base member maintains the plurality of spatial light modulation element arrays in a predetermined relative position in a bare chip state. In the above-described spatial light modulation element module, the plurality of spatial light modulation element arrays may be in a staggered arrangement in at least 1 direction.
Abstract:
A MEMS package structure is disclosed. The MEMS package structure includes a first glass substrate on a micro-electromechanical systems (MEMS) structure, a sealant adhered between the first glass substrate and the MEMS structure; and a first moisture barrier on the sidewalls of the first glass substrate, the sealant, and the MEMS structure.
Abstract:
A mirror device includes a mirror structure including a first movable portion and a second movable portion coupled to a support portion so as to be swingable, and, a mirror, a first coil, and a second coil disposed on the movable portions; a first magnetic portion and a second magnetic portion disposed on a same side as a back surface of the mirror structure to be opposed to the mirror structure, and having a magnetic pole of a first polarity and a magnetic pole of a second polarity, respectively; and a cap structure disposed on a same side as a surface of the mirror structure. The cap structure includes a first region having a magnetic pole of the first polarity, a second region having a magnetic pole of the second polarity, and an unmagnetized third region located between the first region and the second region.