Abstract:
A MEMS (Micro Electro Mechanical System) valve device driven by electrostatic forces is provided. This valve device can provide for fast actuation, large valve force and large displacements while utilizing minimal power. The MEMS valve device includes a substrate having an aperture formed therein, a substrate electrode, a moveable membrane that overlies the aperture and has an electrode element and a biasing element. Additionally, at least one resiliently compressible dielectric layer is provided to insure electrical isolation between the substrate electrode and electrode element of the moveable membrane. In operation, a voltage differential is established between the substrate electrode and the electrode element of the moveable membrane to move the membrane relative to the aperture to thereby controllably adjust the portion of the aperture that is covered by the membrane. Additional embodiments provide for the resiliently compressible dielectric layer to be formed on either or both the substrate electrode and the moveable membrane and provide for either or both the valve seat surface and the valve seal surface. In yet another embodiment the resiliently compressible dielectric layer(s) have a textured surface; either at the valve seat, the valve seal or at both surfaces. In another embodiment of the invention a pressure-relieving aperture is defined within the substrate and is positioned to underlie the moveable membrane. Alternatively, additional embodiments of the present invention provide for MEMS valve arrays driven by electrostatic forces. The MEMS valve array comprises a substrate having a plurality of apertures defined therein. A method for making the MEMS valve device is also provided.
Abstract:
A microfluidic device adapted for use with a power source is disclosed. The device includes a substrate and a heater member. The substrate and heater member form a first portion. A second portion is formed adjacent to the first portion. The second portion includes a high activating power polymer portion, at least one resin layer and a shield member. The second portion is selectively shaped to form a thermal expansion portion. A diaphragm member encapsulates the thermal expansion portion so that when power is applied to the heater portion, the high activating power polymer expands against the diaphragm member, causing the diaphragm member to deflect. This device is adapted for use as a microactuator or a blocking microvalve.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A microelectromechanical (MEMS) device is provided that includes a microelectronic substrate and a thermally actuated microactuator and associated components disposed on the substrate and formed as a unitary structure from a single crystalline material, wherein the associated components are actuated by the microactuator upon thermal actuation thereof. For example, the MEMS device may be a valve. As such, the valve may include at least one valve plate that is controllably brought into engagement with at least one valve opening in the microelectronic substrate by selective actuation of the microactuator. While the MEMS device can include various microactuators, the microactuator advantageously includes a pair of spaced apart supports disposed on the substrate and at least one arched beam extending therebetween. By heating the at least one arched beam of the microactuator, the arched beams will further arch such that the microactuator moves between a closed position in which the valve plate sealingly engages the valve opening and an open position in which the valve plate is at least partly disengaged from and does not seal the valve opening.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A microelectromechanical (MEMS) device is provided that includes a microelectronic substrate and a thermally actuated microactuator and associated components disposed on the substrate and formed as a unitary structure from a single crystalline material, wherein the associated components are actuated by the microactuator upon thermal actuation thereof. For example, the MEMS device may be a valve. As such, the valve may include at least one valve plate that is controllably brought into engagement with at least one valve opening in the microelectronic substrate by selective actuation of the microactuator. While the MEMS device can include various microactuators, the microactuator advantageously includes a pair of spaced apart supports disposed on the substrate and at least one arched beam extending therebetween. By heating the at least one arched beam of the microactuator, the arched beams will further arch such that the microactuator moves between a closed position in which the valve plate sealingly engages the valve opening and an open position in which the valve plate is at least partly disengaged from and does not seal the valve opening. The microactuator may further include metallization traces on distal portions of the arched beams to constrain the thermally actuated regions of arched beams to medial portions thereof. The valve may also include a latch for maintaining the valve plate in a desired position without requiring continuous energy input to the microactuator. An advantageous method for fabricating a MEMS valve having unitary structure single crystalline components is also provided.
Abstract:
A MEMS actuator is provided that produces significant forces and displacements while consuming a reasonable amount of power. The MEMS actuator includes a microelectronic substrate, spaced apart supports on the substrate and a metallic arched beam extending between the spaced apart supports. The MEMS actuator also includes a heater for heating the arched beam to cause further arching of the beam. In order to effectively transfer heat from the heater to the metallic arched beam, the metallic arched beam extends over and is spaced, albeit slightly, from the heater. As such, the MEMS actuator effectively converts the heat generated by the heater into mechanical motion of the metallic arched beam. A family of other MEMS devices, such as relays, switching arrays and valves, are also provided that include one or more MEMS actuators in order to take advantage of its efficient operating characteristics. In addition, a method of fabricating a MEMS actuator is further provided.
Abstract:
A micropump for pumping liquid from an entry channel to an exit channel is disclosed. The micropump is formed in a semiconductor substrate sealed by two glass substrates. The micropump includes first and second chambers and flow channel means coupled between the two chambers. The micropump also includes a valve coupled between the entry channel and the first chamber. The valve includes a flexible valve membrane positioned closer to a second side of the semiconductor substrate than to its first side for causing the valve to be or not to be in contact with the second side of the semiconductor substrate for closing or opening the valve on the glass substrate. Additionally, the micropump includes a diaphragm forming part of a flexible wall of the second chamber and positioned closer to the second side of the semiconductor substrate than to its first side. The diaphragm is responsive to external pressure for causing liquid to be pumped from the entry channel to the exit channel. Thus, the height of the valve is reduced, preventing deformation due to strength such as its own weight and may impact due to a dropping. As a result, the valve sealing is improve on the glass substrate. Therefore, the micropump can accurately discharge a small quantity of liquid.
Abstract:
A laminated structure includes a wafer member with a membrane attached thereto, the membrane being formed of substantially hydrogen-free boron nitride having a nominal composition B.sub.3 N. The structure may be a component in a mechanical device for effecting a mechanical function, or the membrane may form a masking layer on the wafer. The structure includes a body formed of at least two wafer members laminated together with a cavity formed therebetween, with the boron nitride membrane extending into the cavity so as to provide the structural component such as a support for a heating element or a membrane in a gas valve. In another aspect borom is selectively diffused from the boron nitride into a surface of a silicon wafer. The surface is then exposed to EDP etchant to which the diffusion layer is resistant, thereby forming a channel the wafer member with smooth walls for fluid flow.