Abstract:
One of these distilling apparatus (10) comprises two columns, an evaporation column (14) and a condensation column (16), separated by a partition (18) equipped with rows of slits dividing them into 4 distillation stages. The evaporation column (14) comprises plates with hydrophilic or wettable faces, and the condensation column comprises rectangular hollow-plate (21) heat exchangers (221-6). Cold water ascends in these exchangers and saturated humid hot air descends in the condensation column (16). A perforated sheet (251-4) increases the uniformity of the partial airflows descending between the plates. The water is heated in a boiler (34); the hot water is scattered at the top of the evaporation column and the air cooled in the condensation column is sucked downwards by a fan (34). The air flows in a closed circuit. Performance is maximised, after the top temperature TE2 (45 to 90° C.) and the mass flow rate QE0 of the scattered water have been set, by adjusting the mass flow rate QA1 of the sucked dry air in order to give the temperature TA of this air a preset value at the top of the lowest evaporation chamber. Next, the effective cross sections of the partition apertures are adjusted in order to bring the air exiting from the evaporation chambers of higher rank to other preset temperatures TA2 to TAN, the enthalpy curves of the air deviating from flat by 6, with a satisfactory flow rate of distilled water. Applications: production of fresh or very high purity water; production of concentrated industrial wastewater; production of high-concentration ethanol, acids or bases.
Abstract:
An assembly for being dragged by a vessel, wherein the assembly includes a filtering system and a fluidum guiding system, wherein the filtering system is suitable for filtering large volumes of fluidum, and wherein the fluidum guiding system defines a channel configured such that at least in a channel portion the current velocity of the fluidum guided through that channel portion is reduced downstream, and wherein the fluidum guiding system and the filtering system are mutually arranged such that current velocity of fluidum filtered in the filtering system is reduced for decreasing drag
Abstract:
A system for treating wastewater including at least one water-treatment pathway having at least one wastewater inlet, at least one oxygen-permeable, water-impermeable wall, separating an interior of the pathway from outside air, and at least one treated wastewater outlet and arranged for at least aerobic treatment of the wastewater as it flows from the at least one wastewater inlet to the at least one treated wastewater outlet, at least one wastewater supply conduit, supplying the wastewater to the at least one wastewater inlet of the water-treatment pathway and at least one treated wastewater conduit, supplying treated wastewater from the at least one treated wastewater outlet of the at least one water-treatment pathway.
Abstract:
Provided is a filter system including an exposed filtration media. The filter system further includes a raw liquid inlet flow path into a filtering side of the filtration media, a filtered liquid outlet flow path at a filtered side of the filtration media extending to a filtered liquid collecting port, a liquid pump for propelling liquid through the filtration media, and a rinsing mechanism for removing filtrate from the filtering side of the filtration media.
Abstract:
Flow and product waste water from fracturing can be cleaned and reused utilizing a precipitation methodology incorporating, in part, a super critical reactor 30. Initially, the waste water is treated to remove solids, destroy bacteria, and precipitate out certain salts, such as barium, strontium, calcium, magnesium and iron. The waste water then can be passed through a radioactive material adsorption unit 20 to remove radium, as well as other radioactive materials, and then introduced into the super critical reactor 30. The super critical reactor is designed to bring the waste water to super critical conditions at a central portion of the reactor. This causes any dissolve solids, in particular sodium chloride and the like, to precipitate out of solution in the center 42 of the reactor 30 thereby avoiding scale formation on the walls of the reactor. A catalyst can be utilized to promote the breakdown of carbon bonds and promote the water/gas shift reaction. The effluent from the super critical reactor is then cooled and any formed gases separated from the remaining liquid. The remaining liquid can then be introduced back into the environment and the gases can be used to heat the super critical reactor.
Abstract:
In at least one embodiment, the invention provides a retrofit for existing water treatment systems where the retrofit includes at least one of the following: a particulate separator, a supplementary inlet, and a waveform disk-pack turbine. In a further embodiment, the invention includes a water treatment system combined with at least one of the following: a particulate separator, a supplementary inlet, and a waveform disk-pack turbine.
Abstract:
An apparatus, system and method for recovery of artifacts and eradication of invasive species in aquatic environments. The structure may comprise an elongate flexible bladder blanket divider having first and second ends. The structure may have an open bore vertical support operably coupled to the first and second ends. Each end extends into the open bore vertical support and rests on at least one apron bladder of an apron bladder bundle. The at least one apron bladder is contained in the open bore vertical support and at least one apron bladder is between the end of the vertical support and the bottom of the body of water. A method of using the apparatus, comprising providing an apparatus having variable volume first and second compartments separated by a flexible bladder blanket divider; and introducing agents through openings in the bladder to control the growth of or kill the invasive organisms.
Abstract:
An electrolytic cell comprising, a housing having a channel extending there through and an opening formed in the housing for receiving an electrode cartridge, an inlet allowing water to pass into the channel, an outlet allowing water to pass from the channel, and a removable electrode cartridge comprising, a support member, having a outer side an inner side, the support member being adapted to close off the opening in the housing when the electrode cartridge is received in the opening, and a series of separate spaced electrode plates supported by the support member, each electrode plate having a terminal which extends through the support member from the inner side to project from the outer side.
Abstract:
Examples of the present invention include apparatus and methods for particle focusing, for particles within a fluid sample. An example apparatus, which may be a microfluidic device, comprises a substrate, a channel receiving the fluid sample, and at least one surface acoustic wave (SAW) generator. The SAW generator may comprise electrodes supported by the substrate. In some examples, the channel has a particle focusing region located near a region of the substrate surface in which a SAW is generated. Particles are concentrated within one or more particle focus regions of the sample flow (the particle focus regions being appreciably narrower than the channel dimensions) by the effects of the SAW. As an example, a pair of SAW generators can be used to generate a standing surface acoustic wave (SSAW) that is used for particle focusing.
Abstract:
An advanced oxidation procedure for treating solution waste water, comprising: applying an ultrasound-Fenton reaction, wherein said ultrasound-Fenton reaction includes: providing oxidants and at least one catalyst selected from bivalent metal ions which include Ti, Fe, Mg, Mo, and Cu; subjecting the treated solution and said oxidants and catalyst to ultrasound cavitation generated by a generator device; forcing a flow of treated solution through said ultrasound device adapted to generate ultrasound waves for forming cavitation in said treated solution, said flow of treated solution passing through at least one flow-through tubular reactor chamber of the ultrasound device, and wherein said cavitation is effected by longitudinally linear distributed string of ultrasound transducers fixedly disposed and attached along a length of said at least one tubular reactor chamber, and wherein said cavitation is effected along a width dimension of said reactor chamber.