Abstract:
Absorbable medical devices based on novel foams and films made from semi-crystalline, segmented copolymers of lactide and epsilon-caprolactone exhibiting long term absorption characteristics are disclosed. Also disclosed are methods of producing said foams and films, and useful polymer solutions.
Abstract:
Methods provide a polymer foam having high bonding strength and improved compressive hardness characteristics wherein the polymer foam comprising cavities formed by microballoons, and also 2 to 20 vol. %, based on the total volume of the polymer foam, of cavities surrounded by the polymer foam matrix.
Abstract:
The instant invention provides reinforced microcapillary films and/or foams. The inventive reinforced film and/or foam have a first end and a second end, wherein the film and/or foam comprises: (a) a matrix comprising a first thermoplastic material, (b) at least one or more channels disposed in parallel in said matrix from the first end to the second end of the film or foam, wherein said one or more channels are at least 1 μm apart from each other, and wherein each said one or more channels have a diameter in the range of at least 1 μm; and (c) a second thermoplastic material disposed in said one or more channels, wherein said second thermoplastic material is different than the first thermoplastic material; wherein said film has a thickness in the range of from 2 μm to 2000 μm.
Abstract:
Embodiments disclose a foamed, flame-proofed molded body, comprising at least one thermoplastic polymer including a zeolite material in an amount from 0.1 percent by mass to 5.0 percent by mass, based on the weight of the foamed polymer, wherein the thermoplastic polymer is selected from the group consisting of acrylonitrile butadiene styrene (ABS), styrene acrylonitrile (SAN), polystyrene (PS), polycarbonate (PC), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyamide (PA) or mixtures thereof. The foamed polymer further includes hydrous foam cells, and the zeolitic material is at least partially present in dehydrated form. Embodiments disclose a molding compound underlying the molded body, a method for foaming a thermoplastic polymer, and the use of the foamed molded body.
Abstract:
A thermoplastic polyurethane foamed article has a density ranging from 0.3 to 0.8 g/cm3 measured at 25° C. and is self sealable in accordance with Section 7.9 of ASTM D1970/D1970M-11. The thermoplastic polyurethane foamed article is formed by melting and foaming a thermoplastic polyurethane composition having a durometer hardness ranging from 30A to 75D in the presence of a blowing agent.
Abstract translation:热塑性聚氨酯泡沫制品的密度在25℃下测量为0.3至0.8g / cm 3,并且可根据ASTM D1970 / D1970M-11的7.9节自行密封。 热塑性聚氨酯泡沫制品通过在发泡剂存在下熔融和发泡硬度为30A至75D的热塑性聚氨酯组合物而形成。
Abstract:
The invention relates to a method for the production of porous materials by the expansion of polymer gels and to the porous materials produced by such a method and to a moulded body.
Abstract:
Polyurethane composites and methods of preparation are described herein. The methods of making the polyurethane composite can include mixing (1) at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates, and mixtures thereof, (2) at least one polyol, (3) an inorganic filler, and (4) an evaporative coolant in an extruder to form a mixture. The method also include extruding the mixture into a mold cavity, generating heat in the mold cavity from the reaction of the at least one isocyanate and the at least one polyol, and allowing the evaporative coolant to migrate to an interface between the mixture and the interior mold surface. The temperature of the mixture causes evaporation of the evaporative coolant at the interface thereby removing heat at the interface. Suitable evaporative coolants for use in the methods of making the polyurethane composites include hydrofluorocarbons and hydrochlorofluorocarbons.
Abstract:
An extruded polystyrene foam is produced by performing extrusion-foaming with a styrenic resin, a flame retardant composition, and a foaming agent. The flame retardant composition includes a brominated styrene-butadiene polymer, a stabilizer, and a styrenic resin; the brominated styrene-butadiene polymer is contained in an amount of 30 to 80 wt % where the total weight of the flame retardant composition is 100 wt %; and the flame retardant composition has a TGA 5 wt % reduction temperature of 255 to 270° C. The extruded polystyrene foam has excellent thermal stability, excellent flame retardancy, and an excellent appearance.
Abstract:
A method of thermally insulating makes use of a particulate carbon material including carbon particles in a shape of disks and hollow open cones. The hollow open cones can have one or several of the following opening angles: 19.2°, 38.9°, 60°, 83.6°, 112°. The thickness of the disks and the thickness of walls of the hollow open cones can each be less than 100 nm, and the longest dimensions of the disks and the hollow open cones can each be less than 5 μm.
Abstract:
A polymer composition containing a polymer component containing styrenic polymer, a brominated vinyl aromatic/butadiene copolymer and a polyethylene wax, concentration of the polyethylene wax is 0.02 to 1.0 weight percent based on weight of the polymer component, the polyethylene wax has average molecular weight of 10,000 g/mol or less than 10,000 g/mol. The polymer composition can be a polymeric foam.